VISION RESTORATION IN DEGENERATIVE RETINAL DISEASES USING STEM CELLS

Main Article Content

Harini Viswanathan
Dr Ishita Goyal
Dr Salaj Rana
Dr Sandeep Singh
Dr Ravinder Singh
Dr Suraj Singh Senjam

Abstract

Degenerative retinal diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and glaucoma, are significant causes of irreversible visual loss worldwide. Current treatments are mostly palliative, treating the secondary obstacle rather than reversing degenerated retinal cells. Stem-cell–based interventions are shifting the treatment landscape for retinal degeneration by targeting multiple biological pathways—replacing lost cells, protecting surviving neurons, regulating immune activity, and supporting new vessel growth. This review brings together current laboratory and clinical findings on four major cell sources: embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and retinal progenitor cells. Early trials, especially in age-related macular degeneration and retinitis pigmentosa, report good safety outcomes and small but measurable gains in visual function, with transplanted cells surviving in the host retina. However, the major translational hurdles are regulation of the immune response, heterogeneity of long-term integration, surgical complexity, and manufacturing scalability. Advances in engineered delivery systems, immune-evasive pluripotent cells, and biomarker-based patient selection are driving the field toward sustainable therapy. Together, stem cell therapy holds great promise in addressing the unmet needs of degenerative retinal diseases; however, well-designed multicenter trials with well-defined endpoints are essential for determining efficacy and ensuring safe and regulated use in clinical practice.

Downloads

Download data is not yet available.

Article Details

Section

Review Article

How to Cite

1.
VISION RESTORATION IN DEGENERATIVE RETINAL DISEASES USING STEM CELLS. JEFI [Internet]. 2025 Dec. 31 [cited 2026 Jan. 1];3(4 (Supp). Available from: https://efi.org.in/journal/index.php/JEFI/article/view/316

References

1.Singh N, Kaur G. Inflammation and retinal degenerative diseases. Neural Regeneration Research. 2023;18(3):513.

2.Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology. 2014 Nov;121(11):2081–90.

3.Rewri P. Towards better management of glaucoma in India. Indian Journal of Ophthalmology [Internet]. 2023 Mar 1 [cited 2023 Apr 5];71(3):686. Available from: https://journals.lww.com/ijo/Fulltext/2023/03000/Towards_better_management_of_glaucoma_in_India.4.aspx

4.Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health. 2014 Feb;2(2):e106–16.

5.Krishnan T, Ravindran RD, Murthy GVS, Vashist P, Fitzpatrick KE, Thulasiraj RD, et al. Prevalence of early and late age-related macular degeneration in India: the INDEYE study. Investigative Ophthalmology & Visual Science [Internet]. 2010 Feb 1 [cited 2022 Oct 23];51(2):701–7. Available from: https://pubmed.ncbi.nlm.nih.gov/19696177/

6.Krishnaiah S, Das T, Nirmalan PK, Nutheti R, Shamanna BR, Rao GN, et al. Risk Factors for Age-Related Macular Degeneration: Findings from the Andhra Pradesh Eye Disease Study in South India. Investigative Opthalmology & Visual Science. 2005 Dec 1;46(12):4442.

7.Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. The Lancet. 2006 Nov;368(9549):1795–809.

8.Riazuddin SA, Zulfiqar F, Zhang Q, Sergeev YV, Qazi ZA, Husnain T, et al. Autosomal Recessive Retinitis Pigmentosa Is Associated with Mutations inRP1in Three Consanguineous Pakistani Families. Investigative Opthalmology & Visual Science. 2005 Jul 1;46(7):2264.

9.Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V. Prevalence of Diabetic Retinopathy in Urban India: The Chennai Urban Rural Epidemiology Study (CURES) Eye Study, I. Investigative Opthalmology & Visual Science [Internet]. 2005 Jul 1;46(7):2328. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2182886

10.Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care. 2012 Feb 1;35(3):556–64.

11.Tien Yin Wong, Tan TE. The Diabetic Retinopathy “Pandemic” and Evolving Global Strategies: The 2023 Friedenwald Lecture. PubMed [Internet]. 2023 Dec 28;64(15):47–7. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2793235

12.NHS. Glaucoma [Internet]. NHS. 2021. Available from: https://www.nhs.uk/conditions/glaucoma/

13.Kalouda P, Keskini C, Anastasopoulos E, Topouzis F. Achievements and Limits of Current Medical Therapy of Glaucoma. Glaucoma Surgery [Internet]. 2017 [cited 2022 Apr 10];59:1–14. Available from: https://www.karger.com/Article/Abstract/458482

14.NHS Choices. What is AMD? - Age-related macular degeneration (AMD) [Internet]. NHS. 2021. Available from: https://www.nhs.uk/conditions/age-related-macular-degeneration-amd/

15.Fernández-Robredo P, Sancho A, Johnen S, Recalde S, Gama N, Thumann G, et al. Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering. Journal of Ophthalmology [Internet]. 2014;2014:1–13. Available from: https://www.hindawi.com/journals/joph/2014/510285/

16.National Eye Institute. Retinitis Pigmentosa | National Eye Institute [Internet]. Nih.gov. 2023. Available from: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/retinitis-pigmentosa

17.Cross N, van Steen C, Zegaoui Y, Satherley A, Angelillo L. Current and Future Treatment of Retinitis Pigmentosa. Clinical Ophthalmology (Auckland, NZ) [Internet]. 2022 Aug 31;16:2909–21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441588/

18.Sahni JN, Angi M, Irigoyen C, Semeraro F, Romano MR, Parmeggiani F. Therapeutic Challenges to Retinitis Pigmentosa: From Neuroprotection to Gene Therapy. Current Genomics [Internet]. 2011 Jun 1;12(4):276–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131735/

19.NHS. Overview - Diabetic Retinopathy [Internet]. NHS. 2021. Available from: https://www.nhs.uk/conditions/diabetic-retinopathy/

20.Mayo Clinic. Diabetic retinopathy - Diagnosis and treatment - Mayo Clinic [Internet]. Mayoclinic.org. 2023. Available from: https://www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/diagnosis-treatment/drc-20371617

21.Ramsden CM, Powner MB, Carr AJ . F, Smart MJK, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: past, present and future. Development [Internet]. 2013 May 28;140(12):2576–85. Available from: https://dev.biologists.org/content/140/12/2576

22.Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opinion on Biological Therapy. 2015 Sep 28;16(1):7–14.

23.

Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic Stem Cell Trials for Macular degeneration: a Preliminary Report. Lancet (London, England). 2012;379(9817):713–20.

24.Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology [Internet]. 2018 Nov;125(11):1765–75. Available from: https://www.sciencedirect.com/science/article/pii/S0161642018300241

25.Beatty S, Koh HH, Phil M, Henson D, Boulton M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Survey of Ophthalmology [Internet]. 2000 Sep;45(2):115–34. Available from: https://www.surveyophthalmol.com/article/S0039-6257(00)00140-5/fulltext

26.Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Investigative ophthalmology & visual science [Internet]. 2000 Jun;41(7):1981–9. Available from: https://pubmed.ncbi.nlm.nih.gov/10845625/

27.Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Progress in Retinal and Eye Research [Internet]. 2009 Nov 1;28(6):423–51. Available from: https://pubmed.ncbi.nlm.nih.gov/19660572/

28.Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic Retinopathy: More Than Meets the Eye. Survey of Ophthalmology [Internet]. 2002 Dec 1 [cited 2020 Mar 4];47:S253–62. Available from: https://www.sciencedirect.com/science/article/pii/S0039625702003879

29.Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA. Generation, Purification and Transplantation of Photoreceptors Derived from Human Induced Pluripotent Stem Cells. PLoS ONE [Internet]. 2010 Jan 20 [cited 2020 May 5];5(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808350/

30.Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proceedings of the National Academy of Sciences [Internet]. 2015 Dec 22 [cited 2021 Mar 15];113(1):E81–90. Available from: https://www.pnas.org/content/pnas/113/1/E81.full.pdf

31.Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective Effects of Intravitreal Mesenchymal Stem Cell Transplantation in Experimental Glaucoma. Investigative Opthalmology & Visual Science. 2010 Apr 1;51(4):2051.

32.Oh JY, Lee RH. Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Progress in Retinal and Eye Research [Internet]. 2021 Mar 26;85:100967. Available from: https://www.sciencedirect.com/science/article/pii/S1350946221000288?via%3Dihub

33.Goldman D. Müller Glial Cell Reprogramming and Retina Regeneration. Nature Reviews Neuroscience. 2014 Jul 1;15(7):431–42.

34.Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, et al. Intravitreal Autologous Bone Marrow CD34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investigative Ophthalmology & Visual Science. 2014 Dec 9;56(1):81–9.

35.Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application. Stem Cell Reports. 2014 Feb;2(2):205–18.

36.Klassen H, Sakaguchi DS, Young MJ. Stem cells and retinal repair. Progress in retinal and eye research [Internet]. 2004 Mar;23(2):149–81. Available from: https://pubmed.ncbi.nlm.nih.gov/15094129/

37.Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, et al. Modeling Retinal Degeneration Using Patient-Specific Induced Pluripotent Stem Cells. Mattson M, editor. PLoS ONE. 2011 Feb 10;6(2):e17084.

38.MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006 Nov;444(7116):203–7.

39.Na L, Xiao-rong L, Yuan Jia-qin. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefe s Archive for Clinical and Experimental Ophthalmology. 2008 Dec 15;247(4):503–14.

40.Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Reviews and Reports. 2021 Jan 6;

41.Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, et al. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World Journal of Stem Cells [Internet]. 2022 Nov 26;14(11):777–97. Available from: https://www.researchgate.net/publication/365768185_Profile_of_biological_characterizations_and_clinical_application_of_corneal_stemprogenitor_cells

42.Nittala MG, Uji A, Velaga SB, Hariri AH, Naor J, Birch DG, et al. Effect of Human Central Nervous System Stem Cell Subretinal Transplantation on Progression of Geographic Atrophy Secondary to Non Neovascular Age-Related Macular Degeneration. SSRN Electronic Journal. 2019;

43.Kashani AH, Lebkowski JS, Hinton DR, Zhu D, Faynus MA, Chen S, et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem Cell Reports. 2022 Mar 1;17(3):448–58.

44.Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Science Translational Medicine [Internet]. 2018 Apr 4;10(435):eaao4097. Available from: http://stm.sciencemag.org/content/10/435/eaao4097?hwshib2=authn%3A1551205133%3A20190225%253Ac42c7ac8-be27-436d-9098-c288f1bd4b08%3A0%3A0%3A0%3AkW0DGZaWxAlIqaRFbF5yfQ%3D%3D

45.da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nature Biotechnology [Internet]. 2018 Apr 1;36(4):328–37. Available from: https://www.nature.com/articles/nbt.4114

46.Wu Z, Xu X, Cai J, Chen J, Huang L, Wu W, et al. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: a pilot randomized controlled open-label clinical study with 8-year follow-up. Cytotherapy. 2022 Jan;

47.Bonora BM, Albiero M, Morieri ML, Cappellari R, Amendolagine FI, Mazzucato M, et al. Fenofibrate increases circulating haematopoietic stem cells in people with diabetic retinopathy: a randomised, placebo-controlled trial. Diabetologia. 2021 Aug 9;64(10):2334–44.

48.Vilela CAP, Messias A, Calado RT, Siqueira RC, Silva MJL, Covas DT, et al. Retinal function after intravitreal injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma. Documenta Ophthalmologica. 2021 Jan 19;143(1):33–8.

49.Mao J, Wang Y, Gao Y, Wan S, Jiang W, Pan Y, et al. Correlation between anterior chamber angle status and limbal stem cell deficiency in primary angle-closure glaucoma. American Journal of Ophthalmology. 2024 Feb 1;

50.Güçlü H, Çınar AK, Çınar AC, Akaray İ, Şambel Aykutlu M, Sakallıoğlu AK, et al. Corneal epithelium and limbal region alterations due to glaucoma medications evaluated by anterior segment optic coherence tomography: a case-control study. Cutaneous and ocular toxicology [Internet]. 2021 Jun;40(2):85–94. Available from: https://pubmed.ncbi.nlm.nih.gov/33719786/

51.Zhu T, Chen DF, Wang L, Wu S, Wei X, Li H, et al. USH2A variants in Chinese patients with Usher syndrome type II and non-syndromic retinitis pigmentosa. British Journal of Ophthalmology. 2020 Jul 16;105(5):694–703.

52.Zhao T, Liang Q, Meng X, Duan P, Wang F, Li S, et al. Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells Maintains and Partially Improves Visual Function in Patients with Advanced Retinitis Pigmentosa. Stem Cells and Development. 2020 Aug 15;29(16):1029–37.

53.Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, et al. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Research & Therapy. 2021 Jan 9;12(1).

54.Kalaszczynska I, Ferdyn K. Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance. BioMed Research International [Internet]. 2015;2015:1–11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377382/

55.Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. The Lancet [Internet]. 2017 Aug 26;390(10097):849–60. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)31868-8/fulltext

56.Humanitarian Device Exemption (HDE) [Internet]. www.accessdata.fda.gov. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfhde/hde.cfm?id=H110002

57.Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet (London, England). 2015;385(9967):509–16.

58.Kahraman NS. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. International Journal of Ophthalmology [Internet]. 2020 Sep 18;13(9):1423–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459232/

59.ÖZMERT E, ARSLAN U. Management of retinitis pigmentosa by Wharton’s jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Research & Therapy. 2020 Jan 13;11(1).

60.Gu X, Yu X, Zhao C, Duan P, Zhao T, Liu Y, et al. Efficacy and Safety of Autologous Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with Diabetic Retinopathy. Cellular Physiology and Biochemistry. 2018 Jan 1;49(1):40–52.

61.Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, et al. One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Translational Vision Science & Technology [Internet]. 2021 Aug 12;10(10):13–3. Available from: https://tvst.arvojournals.org/article.aspx?articleid=2777956

62.jCyte, Inc, California Institute for Regenerative Medicine (CIRM). A Prospective, Multicenter, Randomized, Study of the Safety and Efficacy of Intravitreal Injection of Human Retinal Progenitor Cells (jCell) in Adult Subjects With Retinitis Pigmentosa (RP) [Internet]. clinicaltrials.gov. 2023. Available from: https://clinicaltrials.gov/study/NCT03073733

63.Park SS, Bauer G, Fury B, Abedi M, Perotti N, Colead-Bergum D, et al. Phase I Study of Intravitreal Injection of Autologous CD34+ Stem Cells from Bone Marrow in Eyes with Vision Loss from Retinitis Pigmentosa. Ophthalmology science [Internet]. 2024;5(1):100589. Available from: https://pubmed.ncbi.nlm.nih.gov/39328826/

64.Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D, et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nature Communications. 2016 Oct 4;7(1).

65.Paul Ravi Waldron, Fabiana Di Marco, Kruczek K, Ribeiro J, Graca AB, Hippert C, et al. Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. 2018 Feb 13;10(2):406–21.

66.Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE, et al. Vision Loss after Intravitreal Injection of Autologous “Stem Cells” for AMD. New England Journal of Medicine. 2017 Mar 16;376(11):1047–53.

67.Okano T, Sawa Y, Barber E, Umezawa A. Regenerative therapy by fusion of medicine and engineering: First-in-human clinical trials with induced pluripotent stem cells and cell sheet technology: A report of the Symposium of Regenerative Medicine for Patients. Regenerative Therapy. 2015 Dec;2:2–5.

68.Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell Death & Disease [Internet]. 2020 Sep 23;11(9):1–14. Available from: https://www.nature.com/articles/s41419-020-02955-3

69.Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, et al. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science & Technology [Internet]. 2020 Jun 3 [cited 2021 Jul 5];9(7):2–2. Available from: https://tvst.arvojournals.org/article.aspx?articleid=2766303

70.Sugita S, Mandai M, Hirami Y, Takagi S, Maeda T, Fujihara M, et al. HLA-Matched Allogeneic iPS Cells-Derived RPE Transplantation for Macular Degeneration. Journal of Clinical Medicine. 2020 Jul 13;9(7):2217.

71.Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine [Internet]. 2017 Mar 16;376(11):1038–46. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa1608368

72.Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature Biotechnology [Internet]. 2019 Mar 1;37(3):252–8. Available from: https://www.nature.com/articles/s41587-019-0016-3

Similar Articles

You may also start an advanced similarity search for this article.