Impact of exercise on epithelial injury of gastrointestinal membrane associated with levels of circulating I-FABP - A systematic review and meta-analysis of randomized control trial
Main Article Content
Abstract
Aim: Intense exercise promotes intestinal injury in the gastrointestinal tract of humans and a substantial upsurge in intestinal permeability indicating gut barrier dysfunction. Design: Systematic review and meta-analysis Objective: The goal line for this systematic review and meta-analysis was to investigate the consequence of a strenuous workout session on Intestinal epithelial cells (IECs) injury of gastrointestinal membrane and permeability in healthy persons. Methods: Through May 2023, PubMed, EMBASE, Scopus, and Web of Science were searched. Studies were included evaluating intestinal Fatty Acid Binding Protein (I-FABP) of gut permeability and gut cell injury following a solitary strenuous workout. Results: 18 studies showed a mean difference of 488.36 [ 95% CI 280.35; 696.37] in I-FABP post-exercise using a random effects model. The studies were heterogeneous, with a 95% prediction interval of − 427.52 to 1404.24. I-FABP, as a measure of gut injury, had a significant and moderate impact magnitude in disturbing the epithelial lining of the intestinal membrane. Conclusion: This project's decisions establish that a sole strenuous exercise session elevates gut permeability and damage to healthy contributors. To avoid GI distress, some precautionary measures can be taken into care, such as avoiding dairy-based products, foods high in fibre content as well as intake of a fructose-rich diet, and avoiding the use of aspirin or other NSAIDs. Among all these, the most crucial point is maintaining hydration during exercise. The study has been registered with PROSPERO (CRD42023387126).
Downloads
Article Details
Section
How to Cite
References
1. Adriaanse, M. P., Tack, G. J., Passos, V. L., Damoiseaux, J. G., Schreurs, M. W., van Wijck, K., Riedl, R. G., Masclee, A. A., Buurman, W. A., Mulder, C. J., & Vreugdenhil, A. C. (2013). Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther, 37(4), 482-490. https://doi.org/10.1111/apt.12194
2. Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol, 14, 189. https://doi.org/10.1186/s12876-014-0189-7
3. Bonomini-Gnutzmann, R., Plaza-Díaz, J., Jorquera-Aguilera, C., Rodríguez-Rodríguez, A., & Rodríguez-Rodríguez, F. (2022). Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. Int J Environ Res Public Health, 19(15). https://doi.org/10.3390/ijerph19159518
4. Chantler, S., Griffiths, A., Matu, J., Davison, G., Jones, B., & Deighton, K. (2021). The Effects of Exercise on Indirect Markers of Gut Damage and Permeability: A Systematic Review and Meta-analysis. Sports Medicine, 51(1), 113-124. https://doi.org/10.1007/s40279-020-01348-y
5. Chantler, S., Griffiths, A., Phibbs, P., Roe, G., Ramírez-López, C., Davison, G., Jones, B., & Deighton, K. (2022). The effect of rugby training on indirect markers of gut permeability and gut damage in academy level rugby players. Eur J Appl Physiol, 122(12), 2545-2554. https://doi.org/10.1007/s00421-022-05027-w
6. 10.1007/s00421-022-05027-w. Epub 2022 Sep 2.
7. Costa, R. J. S., Mika, A. S., & McCubbin, A. J. (2022). The impact of exercise modality on exercise-induced gastrointestinal syndrome and associated gastrointestinal symptoms. J Sci Med Sport, 25(10), 788-793. https://doi.org/10.1016/j.jsams.2022.07.003
8. Costa, R. J. S., Snipe, R. M. J., Kitic, C. M., & Gibson, P. R. (2017). Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther, 46(3), 246-265. https://doi.org/10.1111/apt.14157
9. de Lira, C. A., Vancini, R. L., Ihara, S. S., da Silva, A. C., Aboulafia, J., & Nouailhetas, V. L. (2008). Aerobic exercise affects C57BL/6 murine intestinal contractile function. Eur J Appl Physiol, 103(2), 215-223. https://doi.org/10.1007/s00421-008-0689-7
10. Derikx, J. P., Schellekens, D. H., & Acosta, S. (2017). Serological markers for human intestinal ischemia: A systematic review. Best practice & research Clinical gastroenterology, 31(1), 69-74.
11. Dokladny, K., Zuhl, M. N., & Moseley, P. L. (2016). Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985), 120(6), 692-701. https://doi.org/10.1152/japplphysiol.00536.2015
12. E. Shaaban, A., E. Alfqy, O., K. Shaaban, H., A. Maqsoud, Y., & Assar, E. (2021). Potential role of serum intestinal fatty acid-binding protein as a marker for early prediction and diagnosis of necrotizing enterocolitis in preterm neonates [Original Article]. Journal of Indian Association of Pediatric Surgeons, 26(6), 393-400. https://doi.org/10.4103/jiaps.JIAPS_218_20
13. Furuya-Kanamori, L., Barendregt, J. J., & Doi, S. A. R. (2018). A new improved graphical and quantitative method for detecting bias in meta-analysis. Int J Evid Based Healthc, 16(4), 195-203. https://doi.org/10.1097/xeb.0000000000000141
14. Higgins, J. P., Savović, J., Page, M. J., Elbers, R. G., & Sterne, J. A. (2019). Assessing risk of bias in a randomized trial. Cochrane handbook for systematic reviews of interventions, 205-228.
15. JanssenDuijghuijsen, L. M., Mensink, M., Lenaerts, K., Fiedorowicz, E., van Dartel, D. A., Mes, J. J., Luiking, Y. C., Keijer, J., Wichers, H. J., Witkamp, R. F., & van Norren, K. (2016). The effect of endurance exercise on intestinal integrity in well-trained healthy men. Physiol Rep, 4(20). https://doi.org/10.14814/phy2.12994
16. Karhu, E., Forsgård, R. A., Alanko, L., Alfthan, H., Pussinen, P., Hämäläinen, E., & Korpela, R. (2017). Exercise and gastrointestinal symptoms: running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. Eur J Appl Physiol, 117(12), 2519-2526. https://doi.org/10.1007/s00421-017-3739-1
17. Kartaram, S., Mensink, M., Teunis, M., Schoen, E., Witte, G., Janssen Duijghuijsen, L., Verschuren, M., Mohrmann, K., M'Rabet, L., Knipping, K., Wittink, H., van Helvoort, A., Garssen, J., Witkamp, R., Pieters, R., & van Norren, K. (2019). Plasma citrulline concentration, a marker for intestinal functionality, reflects exercise intensity in healthy young men. Clin Nutr, 38(5), 2251-2258. https://doi.org/10.1016/j.clnu.2018.09.029
18. Kung, S., Vakula, M. N., Kim, Y., England, D. L., Bergeson, J., Bressel, E., Lefevre, M., & Ward, R. (2022). No effect of a dairy-based, high flavonoid pre-workout beverage on exercise-induced intestinal injury, permeability, and inflammation in recreational cyclists: A randomized controlled crossover trial. PLoS One, 17(11), e0277453. https://doi.org/10.1371/journal.pone.0277453
19. Lau, E., Marques, C., Pestana, D., Santoalha, M., Carvalho, D., Freitas, P., & Calhau, C. (2016). The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutrition & Metabolism, 13(1), 31. https://doi.org/10.1186/s12986-016-0089-7
20. March, D. S., Jones, A. W., Thatcher, R., & Davison, G. (2019). The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat. Eur J Nutr, 58(4), 1441-1451. https://doi.org/10.1007/s00394-018-1670-9
21. March, D. S., Marchbank, T., Playford, R. J., Jones, A. W., Thatcher, R., & Davison, G. (2017). Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur J Appl Physiol, 117(5), 931-941. https://doi.org/10.1007/s00421-017-3582-4
22. 10.1007/s00421-017-3582-4. Epub 2017 Mar 13.
23. McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016). PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol, 75, 40-46. https://doi.org/10.1016/j.jclinepi.2016.01.021
24. McKenna, Z., Berkemeier, Q., Naylor, A., Kleint, A., Gorini, F., Ng, J., Kim, J.-K., Sullivan, S., & Gillum, T. (2017). Bovine colostrum supplementation does not affect plasma I-FABP concentrations following exercise in a hot and humid environment. European Journal of Applied Physiology, 117(12), 2561-2567. https://doi.org/10.1007/s00421-017-3743-5
25. Mitchell, C. M., Davy, B. M., Hulver, M. W., Neilson, A. P., Bennett, B. J., & Davy, K. P. (2019). Does Exercise Alter Gut Microbial Composition? A Systematic Review. Medicine and science in sports and exercise, 51(1), 160-167. https://doi.org/10.1249/mss.0000000000001760
26. Morrison, S., Cheung, S., & Cotter, J. (2014). Bovine colostrum, training status, and gastrointestinal permeability during exercise in the heat: A placebo-controlled double-blind study. Applied Physiology, Nutrition, and Metabolism, 39, 1-13. https://doi.org/10.1139/apnm-2013-0583
27. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
28. Pugh, J., Impey, S., Doran, D., Fleming, S., Morton, J., & Close, G. (2017). Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Applied Physiology Nutrition and Metabolism, 42. https://doi.org/10.1139/apnm-2016-0646
29. Pugh, J. N., Sage, S., Hutson, M., Doran, D. A., Fleming, S. C., Highton, J., Morton, J. P., & Close, G. L. (2017). Glutamine supplementation reduces markers of intestinal permeability during running in the heat in a dose-dependent manner. European Journal of Applied Physiology, 117(12), 2569-2577. https://doi.org/10.1007/s00421-017-3744-4
30. Reisinger, K. W., Elst, M., Derikx, J. P. M., Nikkels, P. G. J., de Vries, B., Adriaanse, M. P. M., Jellema, R. K., Kramer, B. W. W., & Wolfs, T. G. A. M. (2014). Intestinal fatty acid–binding protein: a possible marker for gut maturation. Pediatric Research, 76(3), 261-268. https://doi.org/10.1038/pr.2014.89
31. Ribeiro, F. M., Petriz, B., Marques, G., Kamilla, L. H., & Franco, O. L. (2021). Is There an Exercise-Intensity Threshold Capable of Avoiding the Leaky Gut? Front Nutr, 8, 627289. https://doi.org/10.3389/fnut.2021.627289
32. 10.3389/fnut.2021.627289. eCollection 2021.
33. Rücker, G., & Schwarzer, G. (2021). Beyond the forest plot: The drapery plot. Res Synth Methods, 12(1), 13-19. https://doi.org/10.1002/jrsm.1410
34. Sadowska-Krępa, E., Rozpara, M., Rzetecki, A., Bańkowski, S., Żebrowska, A., & Pilch, W. (2021). Strenuous 12-h run elevates circulating biomarkers of oxidative stress, inflammation and intestinal permeability in middle-aged amateur runners: A preliminary study. PLoS One, 16(4), e0249183. https://doi.org/10.1371/journal.pone.0249183
35. 10.1371/journal.pone.0249183. eCollection 2021.
36. Shamim, M. A., Dwivedi, P., & Padhi, B. K. (2023). Beyond the funnel plot: The advantages of Doi plots and prediction intervals in meta-analyses. Asian J Psychiatr, 84, 103550. https://doi.org/10.1016/j.ajp.2023.103550
37. Sheahen, B. L., Fell, J. W., Zadow, E. K., Hartley, T. F., & Kitic, C. M. (2018). Intestinal damage following short-duration exercise at the same relative intensity is similar in temperate and hot environments. Appl Physiol Nutr Metab, 43(12), 1314-1320. https://doi.org/10.1139/apnm-2018-0057
38. Snipe, R. M. J., & Costa, R. J. S. (2018). Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? J Sci Med Sport, 21(8), 771-776. https://doi.org/10.1016/j.jsams.2017.12.014
39. Snipe, R. M. J., Khoo, A., Kitic, C. M., Gibson, P. R., & Costa, R. J. S. (2017). Carbohydrate and protein intake during exertional heat stress ameliorates intestinal epithelial injury and small intestine permeability. Appl Physiol Nutr Metab, 42(12), 1283-1292. https://doi.org/10.1139/apnm-2017-0361
40. Snipe, R. M. J., Khoo, A., Kitic, C. M., Gibson, P. R., & Costa, R. J. S. (2018). The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. European Journal of Applied Physiology, 118(2), 389-400. https://doi.org/10.1007/s00421-017-3781-z
41. Snipe, R. M. J., Khoo, A., Kitic, C. M., Gibson, P. R., & Costa, R. J. S. (2018a). The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur J Appl Physiol, 118(2), 389-400. https://doi.org/10.1007/s00421-017-3781-z
42. 10.1007/s00421-017-3781-z. Epub 2017 Dec 12.
43. Snipe, R. M. J., Khoo, A., Kitic, C. M., Gibson, P. R., & Costa, R. J. S. (2018b). The Impact of Mild Heat Stress During Prolonged Running On Gastrointestinal Integrity, Gastrointestinal Symptoms, Systemic Endotoxin and Cytokine Profiles. Int J Sports Med. https://doi.org/10.1055/s-0043-122742
44. Sun, D. L., Cen, Y. Y., Li, S. M., Li, W. M., Lu, Q. P., & Xu, P. Y. (2016). Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis. Sci Rep, 6, 34371. https://doi.org/10.1038/srep34371
45. Szymanski, M. C., Gillum, T. L., Gould, L. M., Morin, D. S., & Kuennen, M. R. (2018). Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol (1985), 124(2), 330-340. https://doi.org/10.1152/japplphysiol.00515.2017
46. Tataka, Y., Haramura, M., Hamada, Y., Ono, M., Toyoda, S., Yamada, T., Hiratsu, A., Suzuki, K., & Miyashita, M. (2022). Effects of oral cystine and glutamine on exercise-induced changes in gastrointestinal permeability and damage markers in young men. Eur J Nutr, 61(5), 2331-2339. https://doi.org/10.1007/s00394-022-02806-1
47. Van Wijck, K., Lenaerts, K., Van Bijnen, A. A., Boonen, B., Van Loon, L. J., Dejong, C. H., & Buurman, W. A. (2012). Aggravation of exercise-induced intestinal injury by Ibuprofen in athletes. Medicine and science in sports and exercise, 44(12), 2257-2262. https://doi.org/10.1249/MSS.0b013e318265dd3d
48. 10.1249/MSS.0b013e318265dd3d.
49. Van Wijck, K., Lenaerts, K., Van Bijnen, A. A., Boonen, B., Van Loon, L. J. C., Dejong, C. H. C., & Buurman, W. A. (2012). Aggravation of exercise-induced intestinal injury by Ibuprofen in athletes. Medicine and science in sports and exercise, 44(12), 2257-2262. https://doi.org/10.1249/mss.0b013e318265dd3d
50. van Wijck, K., Lenaerts, K., van Loon, L. J., Peters, W. H., Buurman, W. A., & Dejong, C. H. (2011). Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One, 6(7), e22366. https://doi.org/10.1371/journal.pone.0022366
51. van Wijck, K., Wijnands, K. A., Meesters, D. M., Boonen, B., van Loon, L. J., Buurman, W. A., Dejong, C. H., Lenaerts, K., & Poeze, M. (2014). L-citrulline improves splanchnic perfusion and reduces gut injury during exercise. Medicine and science in sports and exercise, 46(11), 2039-2046. https://doi.org/10.1249/mss.0000000000000332
52. Wallett, A., Périard, J. D., Saunders, P., & McKune, A. (2021). Effect of Exercising in the Heat on Intestinal Fatty Acid-Binding Protein, Endotoxins, and Lipopolysaccharide-Binding Protein Markers in Trained Athletic Populations: A Systematic Literature Review. Int J Sport Nutr Exerc Metab, 31(4), 359-368. https://doi.org/10.1123/ijsnem.2021-0040
53. Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 14(1), 135. https://doi.org/10.1186/1471-2288-14-135
54. Wang, F., Wang, X., Liu, Y., & Zhang, Z. (2021). Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxid Med Cell Longev, 2021, 3846122. https://doi.org/10.1155/2021/3846122
55. Wang, Y., Ding, L., Yang, J., Liu, L., & Dong, L. (2021). Intestinal fatty acid-binding protein, a biomarker of intestinal barrier dysfunction, increases with the progression of type 2 diabetes. PeerJ, 9, e10800. https://doi.org/10.7717/peerj.10800
56. Watkins, J. D., Carter, S., Atkinson, G., Koumanov, F., Betts, J. A., Holst, J. J., & Gonzalez, J. T. (2023). Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism, 140, 155375. https://doi.org/https://doi.org/10.1016/j.metabol.2022.155375
57. Willis, B. H., & Riley, R. D. (2017). Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice. Stat Med, 36(21), 3283-3301. https://doi.org/10.1002/sim.7372
58. Zhong, J., Chen, J., Cao, M., Fang, L., Wang, Z., Liao, J., Chen, D., Zhang, X., Guo, J., Zhao, L., & Zhou, C. (2022). Elevated plasma intestinal fatty acid binding protein and aberrant lipid metabolism predict post-stroke depression. Heliyon, 8(11), e11848. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e11848
59. Zuhl, M., Schneider, S., Lanphere, K., Conn, C., Dokladny, K., & Moseley, P. (2014). Exercise regulation of intestinal tight junction proteins. Br J Sports Med, 48(12), 980-986. https://doi.org/10.1136/bjsports-2012-091585