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ABSTRACT

Degenerative retinal diseases, such as age-related macular degeneration, retinitis pigmentosa,
diabetic retinopathy, and glaucoma, are significant causes of irreversible visual loss worldwide.
Current treatments are mostly palliative, treating the secondary obstacle rather than reversing
degenerated retinal cells. Stem-cell-based interventions are shifting the treatment landscape for
retinal degeneration by targeting multiple biological pathways—replacing lost cells, protecting
surviving neurons, regulating immune activity, and supporting new vessel growth. This review brings
together current laboratory and clinical findings on four major cell sources: embryonic stem cells,
induced pluripotent stem cells, mesenchymal stromal cells, and retinal progenitor cells. Early trials,
especially in age-related macular degeneration and retinitis pigmentosa, report good safety outcomes
and small but measurable gains in visual function, with transplanted cells surviving in the host retina.
However, the major translational hurdles are regulation of the immune response, heterogeneity of
long-term integration, surgical complexity, and manufacturing scalability. Advances in engineered
delivery systems, immune-evasive pluripotent cells, and biomarker-based patient selection are driving
the field toward sustainable therapy. Together, stem cell therapy holds great promise in addressing
the unmet needs of degenerative retinal diseases; however, well-designed multicenter trials with well-
defined endpoints are essential for determining efficacy and ensuring safe and regulated use in clinical
practice.
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INTRODUCTION pathological characteristics. Glaucoma, age-
Degenerative retinal diseases constitute a related macular degeneration (AMD), retinitis
diverse group of vision-compromising pigmentosa (RP), and diabetic retinopathy (DR)

disorders with different etiology but shared are some of the diseases included. These
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conditions can result from inherited genetic
abnormalities, acquired retinal trauma, or
systemic disease. Irrespective of etiology, their
characteristic feature is the progressive and
irreversible loss of retinal pigment epithelial
cells and/or photoreceptors, resulting in
progressive visual loss (1).

Glaucoma remains one of the leading causes of
permanent blindness worldwide (2). In India, it
accounts for nearly 5.5% of total blindness
cases (3). The problem is made worse by low
awareness and the fact that many patients are
diagnosed only when the disease has already
advanced, leaving treatment far less effective
(3). The pooled global prevalence of any AMD
in individuals aged 45-85 years was 8.69%.
Although AMD is currently less common in
India than in Europe (4), it is anticipated to rise
significantly due to the nation’s rapidly aging
demographic (5).

Regional factors also shape this burden. Data
from the South Indian arm of the Andhra
Pradesh Eye Disease Study found that older
age, a history of cigar smoking, cortical

cataract, and prior cataract surgery were all
independent risk factors for glaucoma (6). RP
consists of a genetically and clinically diverse
array of hereditary retinal disorders that affect
approximately 1in 4,000 individuals worldwide
and demonstrate a higher incidence in specific
Indian populations (7), a phenomenon closely
associated with cultural and genetic factors,
including a greater frequency of
consanguineous marriages (8). DR is still a
major cause of blindness in working-age
individuals globally (10), and India has a high
rate because it is the "diabetes capital of the
world." (9) The increasing diabetes pandemic
in turn is driving incidence of DR, and it is
becoming an ever more serious public health
problem (11).

Together, these disorders place a heavy strain
on both global and national health systems.
Current therapies, summarized in Table 1, can
slow disease progression but cannot replace
damaged retinal cells. This gap has driven
growing interest in stem-cell-based strategies
aimed at restoring visual function.

TABLE-1: Definition and Limitations of current treatment methods

Disease  Definition Current Key Limitations of treatments
Treatments
Glauco Group of optic Eye drops Decreases |OP but is a weak replacement for
ma nerve (prostaglandi  absent retinal ganglion cells (13)
damage diseases (u  nanalogues, e Prompts poor compliance with long-term drops (13)
sually beta- ¢ Side effects: redness, ocular surface damage (13)
due to elevating IO  blockers), e Surgical complications and potential failure (13)
P) laser eSome improvement despite "controlled" 0P (13)
-> progressing peri  trabeculoplas
pheral vision loss ty,
and blindness (12) trabeculecto
my, drainage
implants (13)
Age- Macular degenerati  Anti-VEGF eCumbersome repetitive injections (every 4—8 weeks)
Related on injections (15)
Macular - loss of central (wet AMD), ¢ Worsening and unpredictable treatment response (15).
Degener vision (14) AREDS ¢ Cannot replace injured photoreceptors
ation supplements  or RPE (15)
(AMD) (early stage), e No treatment for dry AMD; GA progression continues.
lifestyle (15)
modification
(15)
Retinitis  Inherited disease- Gene therapy ¢ >80 genes involved; very
Pigment causing gradual (RPE65 few therapies are comprehensive
osa (RP) death of rods and mutations), ¢ Typically diagnosed late once there has been
cones - night vitamin A, extensive photoreceptor loss
blindness, tunnel low-vision *Gene therapy is only successful if there are living cells
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vision, severe loss aids, retinal
(16) prosthesis
(17)
Diabetic Degeneration of ret  Control of blo
Retinop  inal blood od sugar,
athy vessels as a laser treatme
(DR) consequence nt (PRP), anti-
of prolonged hyper  VEGF/steroid
glycaemia > s, vitrectomy
leakage, oedema, (20)

ischemia (19)

¢ Retinal implants are of low resolution
and few degrees of vision (18)

eTreats complication and not causative factore Multiple i
njections; unpredictable responsee
PRP decreases peripheral and night vision (20)

Why Stem Cells Are Potentially Promising in
Ophthalmology

The retina is a highly specialized neural tissue,
but its capacity to regenerate is extremely
limited. When photoreceptors or retinal
pigment epithelial (RPE) cells are lost, they
aren’t naturally replaced, leading to
permanent vision loss. Stem cells, with their
ability to renew themselves and develop into
multiple retinal cell types, offer a promising
route for both cell replacement and
neuroprotection (21).

Beneficial aspects of ophthalmology are
relative immune privilege of the eye, small
target region, and ease of access for imaging
and surgical access, making it an ideal target
for precision delivery and tracking of cell-based
therapies. (21,22)

Derivatives from human embryonic stem cells
(hESC)-RPE were found to be safe and to
demonstrate early signs of efficacy in clinical
trials. (23,24)

Mechanisms of Degeneration in Affected
Diseases

Target diseases such as AMD, RP, and DR
involve progressive loss of retinal cells by
various pathological mechanisms:
Photoreceptor apoptosis: Caused by genetic
mutations (RP) or oxidative stress (AMD)
(16,25).

RPE atrophy: Impaired phagocytosis of
photoreceptor outer segments, accumulation
of lipofuscin, and drusen formation (AMD) (26)
Inflammation & gliosis: Prolonged
inflammation leads to activation of microglia
and Miller cell gliosis, further disrupting
retinal architecture (27)

Vascularpathology: DR causes microvascular
ischemia and leakage, which results in
secondary degeneration and neuronal hypoxia
(28).

How Stem Cells Could Address These Diseases
Stem cell therapy aims to intervene through
multiple mechanisms:

Cell replacement: Differentiation into RPE or
photoreceptors to replace lost cells(29,30).
Neuroprotection: Mesenchymal stem cells
(MSCs) and neural progenitor cells secrete
trophic factors (e.g., BDNF, CNTF) that prevent
apoptosis and support surviving retinal
cells(31).

Immunomodulation: MSCs modulate
microglial  activation, reducing chronic
inflammation(32).

Stimulation of endogenous repair: Miiller glia
and induced pluripotent stem cell (iPSC)-
derived factors may activate dormant
regenerative pathways (33).

Vascular support: Endothelial progenitor cells
can promote revascularization in ischemic
retinopathies (34).

Types of Stem Cells Investigated and
Mechanisms of Action

Various types of stem cells have been
investigated for retinal regeneration, each with
their own biological characteristics,
differentiation capacity, and therapeutic
approaches. (3)

Embryonic Stem Cells (ESCs)

Overview: Human embryonic stem cells
(hESCs) are pluripotent cells that originate
from the inner cell mass of the blastocyst. They
can develop into all types of retinal cells, such
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as retinal pigment epithelium (RPE),
photoreceptors, and ganglion cells. (35)

Mechanisms of Action - Replacement of cells:
Transdifferentiated hESCs into RPE have been
transplanted in AMD and Stargardt disease
models, where they restore RPE function,
phagocytose photoreceptor outer segments,
and maintain photoreceptor viability (35,24).
Integration: hESC-derived photoreceptors are
able to make synaptic contacts with host
bipolar cells in preclinical models (30).

Neurotrophic support: hESC-derived cells
release growth factors that can support
survival of remaining retinal cells. (30)

Induced Pluripotent Stem Cells (iPSCs)
Overview: iPSCs are induced from adult
somatic cells (e.g., fibroblasts) to pluripotency
by transcription factors (OCT4, SOX2, KLF4, c-
MYC). iPSCs bypass the ethical issues of hESCs
and enable patient-specific autologous
transplantation. (23)

Mechanisms of Action - Individualized therapy:
iPSC-derived RPE and photoreceptors are
genetically matched to the patient, which can
reduce immune rejection (36). Disease
modelling: iPSCs are used to model retinal
diseases in vitro and screen therapeutic
compounds (37).

Cell replacement: In animal models, iPSC-
derived photoreceptors  restore light
responses and visual function. (29)

Retinal Progenitor Cells (RPCs)

Overview: RPCs are multipotent fetal or
neonatal retinal cells that have the capacity to
differentiate into photoreceptors, bipolar cells,
and glia.

Mechanisms of Action - Host retinal
integration: RPCs migrate to the outer nuclear
layer and differentiate into photoreceptor-like
cells (36). Paracrine support: RPCs secrete
neurotrophic factors (CNTF, BDNF) that
protect host photoreceptors from
degeneration (22).

© 2025 JEFI

Synaptic connection: Synaptic development
with pre-existing retinal neurons is indicated
by certain studies (38).

Mesenchymal Stem Cells (MSCs)

Overview: MSCs are multipotent stromal cells
that are derived from bone marrow, adipose
tissue, umbilical cord, or dental pulp. They do
not tend to differentiate into photoreceptors
but have strong paracrine and
immunomodulatory activity.

Mechanisms of Action - Neuroprotection:
BDNF, NGF, and VEGF release sustains retinal
cell survival (31). Immunomodulation: MSCs
inhibit  pro-inflammatory cytokines and
microglia activation (39).

Angiogenesis: MSC-derived factors can cause
revascularization in ischemic retinopathies
(40).

Miller Glia—Derived Stem/Progenitor Cells
Overview: In lower vertebrates like zebrafish,
Miller glia have the ability to regenerate
retinal neurons after injury. In mammals, they
can be reprogrammed into a progenitor-like
state.

Mechanisms of Action - Endogenous
regeneration: Transcription factor activation
(Ascl1, Pax6) can trigger neurogenesis (33).

Supportive function: In the absence of
complete differentiation, Miller glia are
structural and metabolic supports to retinal
neurons.

Endothelial Progenitor Cells (EPCs)

Overview: EPCs are circulating precursors with
the ability to differentiate into vascular
endothelial cells.

Mechanisms of Action - Vascular repair: EPCs
are incorporated into injured retinal capillaries
and induce neovascularization in ischemic
tissue (41).

Paracrine action: They secrete angiogenic
factors such as VEGF and angiopoietin.

Clinical Trials, and Market Studies
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TABLE-2: CLINICAL TRIALS
Age-related macular degeneration

Clinical Trial Name

Study Method

Most Important Finding

Nittala MG et al., 2021
— HUCNS-SC in GA

Kashani AH et al., 2022
— HLA-mismatched
bioengineered RPE
implant

Kashani AH et al., 2018
— Bioengineered RPE
monolayer
daCruzLetal., 2018 —
hESC-RPE pat

Diabetic Retinopathy
Wu Z et al., 2022 — UC-
MSC + aBM-MNC in T1D

Bonora BM et al., 2021
— Fenofibrate & HSPCs
in DR

Glaucoma

Vilela CAP et al., 2021 —
Intravitreal autologous
BMSC in advanced
glaucoma

MaoJetal., 2024 —
ACA status vs limbal
stem cell deficiency in
PACG

Khatib TZ et al., 2019 —
Hemoglobin video
imaging of aqueous
outflow

Glgli Hetal., 2021 —
Corneal/limbal
alterations from
glaucoma meds

Retinitis pigmentosa

Subretinal transplantation of human
CNS stem cells (HUCNS-SC) in
non-neovascular AMD with
geographic atrophy (42)

Subretinal polarized hESC-RPE
monolayer (phase 1/2a) (43)

Subretinal RPE monolayer for
advanced dry AMD (44)

Subretinal hESC-RPE patch (45)

RCT (42 patients); UC-MSC +
autologous BM-MNC
transplantation vs standard care; 8-
year follow-up. (46)

12-week double-blind RCT; 42
patients with DR randomized to
fenofibrate or placebo; primary
endpoint = circulating HSPC levels
(CD34+/CD133+). (47)

Phase | pilot study; two patients
with advanced glaucoma received a
single intravitreal injection of
autologous bone marrow—derived
MSCs; ERG and visual function
monitored post-injection. (48)
Cross-sectional observational study
including 54 PACG eyes and 54
controls; UBM used to assess
anterior chamber angle state; IVCM
used to measure limbal epithelial
basal cell density. (49)

Prospective imaging study: high-
resolution hemoglobin video
imaging integrated into routine slit-
lamp examination to quantify
aqueous outflow before and after
intervention. (50)

Case—control study; glaucoma
patients on long-term topical
therapy compared with healthy
controls; anterior segment OCT used
to evaluate corneal epithelium and
limbal region alterations. (46)

In this small pilot, HUCNS-SC
transplantation appeared associated
with slower expansion of GA in the
transplanted quadrant. (42)

Survival of HLA-mismatched RPE grafts;
safety with preliminary
structural/functional signals (43)

Safety and structural evidence of graft
survival (44)

Patch survival with visual function
support in severe AMD (45)

Significantly fewer complications:
neuropathy (7.1% vs 46.7%),
nephropathy (7.1% vs 40%), retinopathy
(7.1% vs 33.3%); no malignancies. (46)
Fenofibrate significantly increased
circulating HSPCs, suggesting a
mechanism for reduced DR progression.
(47)

No ERG response change observed; one
case developed a complication; no
functional improvement. Authors suggest
modified MSCs may be required for
therapeutic effect. (48)

PACG eyes with narrower/closed ACA
had significantly reduced limbal epithelial
basal cell density compared to controls,
establishing a structural link between
angle status and limbal stem cell
deficiency. (49)

Hemoglobin video imaging enables real-
time slit-lamp—based quantification of
aqueous outflow, with potential to guide
targeted therapies and advance
understanding of outflow dysregulation
in glaucoma (50)

Long-term topical therapy associated
with measurable limbal epithelial and
corneal changes on AS-OCT (46)
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Age-related macular degeneration
Clinical Trial Name Study Method

Most Important Finding

ZhuTetal., 2021 —
USH2A variants in
RP/Usher Il

Genetic profiling of a large Chinese
cohort of RP/Usher Il patients (51)

Defined USH2A variant spectrum and
genotype—phenotype correlations (51)

ZhaoTetal, 2020 — IV Phase I/Il trial; intravenous infusion Intravenous infusion of UC-MSCs showed

infusion of UC-MSCs in
advanced RP
Tuekprakhon A et al.,
2021 — Intravitreal
autologous MSCs in RP

of UC-MSCs in advanced RP (52)

Non-randomized phase [;
intravitreal autologous MSC
injection in RP patients (53)

no significant adverse effects (52)

Treatment was safe and feasible, with
early signals of functional benefit (53)

OzmertEetal.,, 2020 —  Prospective 1-year study; Wharton’s  Visual and structural improvements

Wharton’s jelly MSCs in  jelly MSC transplantation in RP (54)

RP

correlated with inheritance patterns (54)

Market Status and Most Successful Clinical
Outcomes of Stem Cell Therapy in Retinal
Disorders:

Market Translation (Approved/Regulatory-
Ready Therapies)

To date, there are no stem cell-derived
products officially approved for routine clinical
use in AMD, RP, DR, or glaucoma. The only
FDA-approved therapy in the inherited retinal
disease category remains gene therapy for
RPE65-led RP, as well as retinal prostheses for
end-stage RP, not stem cells. Stem cell therapy
for these disorders remains, therefore,
experimental, with translation limited to early-
to mid-stage clinical trials (55,56)

Most Successful Clinical Evidence to Date

Despite the absence of approved products,
several stem cell approaches have consistently
demonstrated safety and functional benefits
across clinical trials. In AMD, transplants of
human embryonic stem cell-derived retinal
pigment epithelium (hESC-RPE) have enhanced
visual acuity and preserved graft survival, free
from  tumorigenicity(23,57).  Autologous
induced pluripotent stem cell-derived retinal
pigment epithelium grafts in neovascular AMD
were safe and preserved retinal structure and
visual stability for four years (45). In RP, a
Phase Ill trial of suprachoroidal umbilical cord—
derived mesenchymal stem cells (UC-MSCs) in
82 patients demonstrated improved or
stabilised vision in approximately 90% of
treated eyes, with no severe adverse events
reported (58). Small RP trials of Wharton's
jelly—derived MSCs and bone marrow—derived
MSCs also showed improvements in short-
term best-corrected visual acuity and retinal

© 2025 JEFI

thickness(59). In DR, the administration of
intravenous or intravitreal MSCs has been
demonstrated to reduce vascular leakage,
improve neurotrophic support, and improve
BCVA in early-stage patients without immune
complications. Despite the paucity of
glaucoma trials, MSC-derived paracrine factors
and preclinical studies offer a neuroprotective
advantage for retinal ganglion cells, providing
a translational basis. As a whole, these results
put ESC/iPSC-RPE grafts for AMD and MSC-
based therapies for RP and DR on the most
clinically advanced trajectories towards being
market-ready(60).

Benefits

Histological engraftment of RPE has been
repeatedly reported. Long-term pigmentation
and OCT findings of stable monolayer under
atrophy/scar in AMD patients and in CPCB-
RPE1 implantation have been reported.
(57,44,61)

Practical functional benefit can be achieved in
some situations. Engineered RPE patch
transplanted subretinally recorded +29/+21
letters at 12 months in advanced neovascular
AMD with on-patch survival. (45)

Photoreceptor support can improve vision in
RP. Intravitreal hRPC (gene-agnostic) caused
dose-dependent BCVA gain and secondary
measures (contrast sensitivity, mobility, VFQ)
in a randomised Phase 2b trial and subgroup
analyses. (62)

Paracrine and vasculotropic strategies seem
plausible and secure. Intravitreal
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administration of autologous CD34+ cells (pilot
Phase 1) demonstrated favourable ocular
tolerability alongside preliminary imaging
indicators. (63)

CONCLUSION

Stem cell-based therapies have revolutionary
promise for the management of degenerative
retinal disease like AMD, RP, glaucoma, and
diabetic retinopathy, wherein traditional
therapies are mainly palliative. Across varied
preclinical and early clinical trials, stem cell
strategies such as mesenchymal stromal cells,
retinal pigment epithelium, and retinal
progenitor cells have demonstrated promising
evidence of safety, neuroprotection, and
structural integration with variable efficacy.
Notably, such studies go to emphasize both the
potential and complexity of regenerative
strategy translation to long-term visual
outcomes. Heterogeneity, cell sources, and
delivery routes imply the need for robust,
multicenter trials with standardized endpoints.
Progress in the future will rest not only on
optimizing cell survival and functional
integration but also on blocking adverse
effects and addressing disease-specific
pathophysiology. Cumulatively, this early
evidence body places stem cell therapy at the
cusp of next-generation ophthalmic
treatments with credible promise toward
vision restoration in disorders heretofore
deemed irreversible.

Mechanistic uncertainty (integration vs.
material transfer). Preclinical evidence
suggests that "rescue" is donor—host material
transfer, not true synaptic integration, with
host context-dependent effects requiring
lineage-traced readouts and judicious model
selection. (64,65) Heterogeneous efficacy and
first-trial size. Benefit across indications is
restricted and untested in small, early-stage
populations; no Phase 3 approvals to date.
(23,62)

Surgical and device complexity for patches
involves retinotomy and sub foveal handling,
requiring specialized instruments. Potential
hazards include tears, haemorrhage, and
detachment, along with challenges related to

scalability and access. Immune management is
crucial; studies involving hESC-RPE commonly
utilize either peri-systemic or chronic local
steroids. Autologous iPSC-RPE was feasible
but challenging to scale; HLA-matched
allogeneic iPSC-RPE has shown 1-year safety
with steroids, but durability/generalizability
needs to be addressed. (66,67)

Manufacturing/CMC limitations. Lot-to-lot
variability, potency tests, and cost/time
(particularly autologous) are still rate-limiting;
iPSC banks and new-generation platforms are
useful but create new validation requirements.
(67,68)

Trial design and endpoints. BCVA might not be
sufficient to determine localised/functional
improvement in GA or ultra-low vision; trials
must include microperimetry, mobility,
reading speed, contrast, and PROs, biomarker-
guided enrichment (e.g., fixation reliability, EZ
integrity). (69,62)

Safety outside of regulated trials. Although
regulated ocular trials are
teratoma/uncontrolled growth-free, there has
been severe vision loss following unregulated
intravitreal "stem-cell" injections placing a high
value on GMP products and IRB-approved
protocols. (23,66)

Adverse events (AEs) and safety indicators
Procedure-related: Subretinal surgery may
lead to retinal tears/detachment,
subretinal/choroidal haemorrhage, and
epiretinal membrane; these occurrences were
rare in experienced hands and diminished with
technique improvement. (61,44,45)

Immunologic/tumorigenicity: Teratomas or
uncontrolled growth have not been seen in any
of the pluripotent-derived RPE trials thus far;
AEs were most often caused by surgery or
immunosuppression (when given). (57,24)

Intravitreal cell safety: intravitreal injections of
hRPC and CD34+ have shown excellent ocular
tolerability in randomised controlled clinical
trials. (34)
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Warning (beyond controlled trials): Loss of
vision has occurred due to intravitreal injection
of untested "stem cells" in for-profit facilities,
and this highlights the need for controlled,
GMP-produced material and IRB-approved
protocols. (66)

Synthesis of current evidence to date
Throughout early human trials, RPE
replacement with hESC-RPE suspensions has
structural evidence of graft survival and
acceptable safety for ~2 years, and engineered
RPE patches have clinically significant letter
improvement in well-selected advanced
neovascular AMD. Gene-agnostic intravitreal
hRPC in RP has dose-dependent BCVA gain
with good tolerability, and autologous CD34+
intravitreal therapy is feasible and safe with
investigational structural signals. Collectively,
these data establish the biologic plausibility
and clinical feasibility of stem-cell-based
retinal therapy.(57,23,45,62,68)

Clinical potential versus present challenges

If durability and integration problems are
solved, RPE patches may be a regenerative
therapy for late AMD with RPE loss, and
intravitreal progenitor approaches may
provide gene-agnostic rescue in
heterogeneous RP. Widespread use is held
back by immune regulation, surgical
optimisation, manufacturing/CMC
standardisation, and endpoint sensitivity
domains in which the current solutions (HLA-
matched iPSC banks, hypoimmunogenic
editing, optimised delivery, and multimodal
endpoints) are excellent but not vyet
complete.(64,71,72,45)

Major Research Shortfalls in Need of
Attention

Durability & dose: long-term (>2-5 )
survival/function, redosing paradigms, and
structure—function coupling. (57)

Mechanism: definitive integration vs material
transfer in humans using lineage-aware assays.
(64)

Immunology: randomised comparisons of HLA-
matched vs standard allogeneic cells; first-in-
human hypoimmunogenic PSC derivatives. 4)

© 2025 JEFI

Delivery science: head-to-head suspension vs
monolayer/scaffold for RPE replacement;
complication-minimising tools. (45)

Endpoints: validated composite outcomes
(BCVA + microperimetry + mobility/PRO) and
earlier-stage cohorts to detect disease-
modifying effects. (69)

Safety in real-world settings: registries to
monitor rare AEs and prevent unregulated
uses. (66)

FUTURE DIRECTIONS

e |Immune evasion strategies. Two parallel
approaches are ongoing: (i) HLA-matched
iPSC-RPE  from national/regional iPSC
banks to reduce rejection with minimal
systemic immunosuppression; and (ii)
gene-modified hypoimmunogenic
("universal") PSCs (e.g., HLA class I/1I
disruption with CD47 overexpression) now
showing long-term survival in non-human
primates approaches that may enable off-
the-shelf ocular cell therapies. (70,67)

e Refinements in delivery. Second-
generation engineered scaffolds/patches
with improved Bruch's membrane-like
mimicry, miniaturised incisional strategies,
and specially designed micro-instruments
(or  robot-assisted) will potentially
decrease  surgical morbidity  with
preservation of polarity and coverage.
(46,45)

e Biomarker-stratified patient selection.
Randomised hRPC data reveal dose-
dependent effects with more potent
effects in fixation-reliable, anatomy-
matched subgroups; trials need to
prospectively enrich by
structural/functional biomarkers (e.g.,
ellipsoid zone integrity, fixation measures).
(62)

e Mechanistic readouts and imaging.
Lineage tracing, human-specific reporters,
and high-end imaging (e.g., AO-OCT) can
differentiate integration from paracrine
rescue and monitor cell-host interactions
in vivo. (64)
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Standardised organoid platforms for
discovery and QC. hPSC retinal organoids
allow standardised disease modelling,
potency assays, and drug screening, and
can also be used as release-test platforms
with clinical phenotype concordance. (68)
Patient-relevant outcomes. Add
microperimetry, mobility function, reading
speed, and PROs to BCVA and OCT, with
agreement on thresholds of clinically
important change to facilitate regulatory
convergence. (69)
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