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ABSTRACT 
Degenerative retinal diseases, such as age-related macular degeneration, retinitis pigmentosa, 
diabetic retinopathy, and glaucoma, are significant causes of irreversible visual loss worldwide. 
Current treatments are mostly palliative, treating the secondary obstacle rather than reversing 
degenerated retinal cells. Stem-cell–based interventions are shifting the treatment landscape for 
retinal degeneration by targeting multiple biological pathways—replacing lost cells, protecting 
surviving neurons, regulating immune activity, and supporting new vessel growth. This review brings 
together current laboratory and clinical findings on four major cell sources: embryonic stem cells, 
induced pluripotent stem cells, mesenchymal stromal cells, and retinal progenitor cells. Early trials, 
especially in age-related macular degeneration and retinitis pigmentosa, report good safety outcomes 
and small but measurable gains in visual function, with transplanted cells surviving in the host retina. 
However, the major translational hurdles are regulation of the immune response, heterogeneity of 
long-term integration, surgical complexity, and manufacturing scalability. Advances in engineered 
delivery systems, immune-evasive pluripotent cells, and biomarker-based patient selection are driving 
the field toward sustainable therapy. Together, stem cell therapy holds great promise in addressing 
the unmet needs of degenerative retinal diseases; however, well-designed multicenter trials with well-
defined endpoints are essential for determining efficacy and ensuring safe and regulated use in clinical 
practice. 
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INTRODUCTION 
Degenerative retinal diseases constitute a 
diverse group of vision-compromising 
disorders with different etiology but shared 

pathological characteristics. Glaucoma, age-
related macular degeneration (AMD), retinitis 
pigmentosa (RP), and diabetic retinopathy (DR) 
are some of the diseases included. These 
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conditions can result from inherited genetic 
abnormalities, acquired retinal trauma, or 
systemic disease. Irrespective of etiology, their 
characteristic feature is the progressive and 
irreversible loss of retinal pigment epithelial 
cells and/or photoreceptors, resulting in 
progressive visual loss (1). 
Glaucoma remains one of the leading causes of 
permanent blindness worldwide (2). In India, it 
accounts for nearly 5.5% of total blindness 
cases (3). The problem is made worse by low 
awareness and the fact that many patients are 
diagnosed only when the disease has already 
advanced, leaving treatment far less effective 
(3). The pooled global prevalence of any AMD 
in individuals aged 45–85 years was 8.69%. 
Although AMD is currently less common in 
India than in Europe (4), it is anticipated to rise 
significantly due to the nation’s rapidly aging 
demographic (5). 
 
Regional factors also shape this burden. Data 
from the South Indian arm of the Andhra 
Pradesh Eye Disease Study found that older 
age, a history of cigar smoking, cortical 

cataract, and prior cataract surgery were all 
independent risk factors for glaucoma (6). RP 
consists of a genetically and clinically diverse 
array of hereditary retinal disorders that affect 
approximately 1 in 4,000 individuals worldwide 
and demonstrate a higher incidence in specific 
Indian populations (7), a phenomenon closely 
associated with cultural and genetic factors, 
including a greater frequency of 
consanguineous marriages (8). DR is still a 
major cause of blindness in working-age 
individuals globally (10), and India has a high 
rate because it is the "diabetes capital of the 
world." (9) The increasing diabetes pandemic 
in turn is driving incidence of DR, and it is 
becoming an ever more serious public health 
problem (11). 
 
Together, these disorders place a heavy strain 
on both global and national health systems. 
Current therapies, summarized in Table 1, can 
slow disease progression but cannot replace 
damaged retinal cells. This gap has driven 
growing interest in stem-cell–based strategies 
aimed at restoring visual function. 

 
TABLE-1: Definition and Limitations of current treatment methods 

Disease Definition Current 
Treatments 

Key Limitations of treatments 

Glauco
ma 

Group of optic 
nerve 
damage diseases (u
sually 
due to elevating IO
P) 
→ progressing peri
pheral vision loss 
and blindness (12) 

Eye drops 
(prostaglandi
n analogues, 
beta-
blockers), 
laser 
trabeculoplas
ty, 
trabeculecto
my, drainage 
implants (13) 

Decreases IOP but is a weak replacement for 
absent retinal ganglion cells (13) 
• Prompts poor compliance with long-term drops (13) 
• Side effects: redness, ocular surface damage (13) 
• Surgical complications and potential failure (13) 
•Some improvement despite "controlled" IOP (13) 

Age-
Related 
Macular 
Degener
ation 
(AMD) 

Macular degenerati
on 
→ loss of central 
vision (14) 

Anti-VEGF 
injections 
(wet AMD), 
AREDS 
supplements 
(early stage), 
lifestyle 
modification 
(15) 

•Cumbersome repetitive injections (every 4–8 weeks) 
(15) 
• Worsening and unpredictable treatment response (15). 
• Cannot replace injured photoreceptors 
or RPE (15) 
• No treatment for dry AMD; GA progression continues. 
(15) 

Retinitis 
Pigment
osa (RP) 

Inherited disease-
causing gradual 
death of rods and 
cones → night 
blindness, tunnel 

Gene therapy 
(RPE65 
mutations), 
vitamin A, 
low-vision 

• >80 genes involved; very 
few therapies are comprehensive 
• Typically diagnosed late once there has been 
extensive photoreceptor loss 
•Gene therapy is only successful if there are living cells 
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vision, severe loss 
(16) 

aids, retinal 
prosthesis 
(17) 

• Retinal implants are of low resolution 
and few degrees of vision (18) 

Diabetic 
Retinop
athy 
(DR) 

Degeneration of ret
inal blood 
vessels as a 
consequence 
of prolonged hyper
glycaemia → 
leakage, oedema, 
ischemia (19) 

Control of blo
od sugar, 
laser treatme
nt (PRP), anti-
VEGF/steroid
s, vitrectomy 
(20) 

•Treats complication and not causative factor• Multiple i
njections; unpredictable response• 
PRP decreases peripheral and night vision (20) 

 
Why Stem Cells Are Potentially Promising in 
Ophthalmology 
The retina is a highly specialized neural tissue, 
but its capacity to regenerate is extremely 
limited. When photoreceptors or retinal 
pigment epithelial (RPE) cells are lost, they 
aren’t naturally replaced, leading to 
permanent vision loss. Stem cells, with their 
ability to renew themselves and develop into 
multiple retinal cell types, offer a promising 
route for both cell replacement and 
neuroprotection (21). 
Beneficial aspects of ophthalmology are 
relative immune privilege of the eye, small 
target region, and ease of access for imaging 
and surgical access, making it an ideal target 
for precision delivery and tracking of cell-based 
therapies. (21,22) 
 
Derivatives from human embryonic stem cells 
(hESC)-RPE were found to be safe and to 
demonstrate early signs of efficacy in clinical 
trials. (23,24) 
 
Mechanisms of Degeneration in Affected 
Diseases 
Target diseases such as AMD, RP, and DR 
involve progressive loss of retinal cells by 
various pathological mechanisms: 
Photoreceptor apoptosis: Caused by genetic 
mutations (RP) or oxidative stress (AMD) 
(16,25). 
RPE atrophy: Impaired phagocytosis of 
photoreceptor outer segments, accumulation 
of lipofuscin, and drusen formation (AMD) (26) 
Inflammation & gliosis: Prolonged 
inflammation leads to activation of microglia 
and Müller cell gliosis, further disrupting 
retinal architecture (27) 

Vascularpathology: DR causes microvascular 
ischemia and leakage, which results in 
secondary degeneration and neuronal hypoxia 
(28). 
 
How Stem Cells Could Address These Diseases 
Stem cell therapy aims to intervene through 
multiple mechanisms: 
Cell replacement: Differentiation into RPE or 
photoreceptors to replace lost cells(29,30). 
Neuroprotection: Mesenchymal stem cells 
(MSCs) and neural progenitor cells secrete 
trophic factors (e.g., BDNF, CNTF) that prevent 
apoptosis and support surviving retinal 
cells(31). 
Immunomodulation: MSCs modulate 
microglial activation, reducing chronic 
inflammation(32). 
Stimulation of endogenous repair: Müller glia 
and induced pluripotent stem cell (iPSC)-
derived factors may activate dormant 
regenerative pathways (33). 
Vascular support: Endothelial progenitor cells 
can promote revascularization in ischemic 
retinopathies (34). 
 
Types of Stem Cells Investigated and 
Mechanisms of Action 
Various types of stem cells have been 
investigated for retinal regeneration, each with 
their own biological characteristics, 
differentiation capacity, and therapeutic 
approaches. (3) 
 
Embryonic Stem Cells (ESCs) 
Overview: Human embryonic stem cells 
(hESCs) are pluripotent cells that originate 
from the inner cell mass of the blastocyst. They 
can develop into all types of retinal cells, such 
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as retinal pigment epithelium (RPE), 
photoreceptors, and ganglion cells. (35) 
 
Mechanisms of Action - Replacement of cells: 
Transdifferentiated hESCs into RPE have been 
transplanted in AMD and Stargardt disease 
models, where they restore RPE function, 
phagocytose photoreceptor outer segments, 
and maintain photoreceptor viability (35,24). 
Integration: hESC-derived photoreceptors are 
able to make synaptic contacts with host 
bipolar cells in preclinical models (30).  
 
Neurotrophic support: hESC-derived cells 
release growth factors that can support 
survival of remaining retinal cells. (30) 
 
Induced Pluripotent Stem Cells (iPSCs) 
Overview: iPSCs are induced from adult 
somatic cells (e.g., fibroblasts) to pluripotency 
by transcription factors (OCT4, SOX2, KLF4, c-
MYC). iPSCs bypass the ethical issues of hESCs 
and enable patient-specific autologous 
transplantation. (23) 
 
Mechanisms of Action - Individualized therapy: 
iPSC-derived RPE and photoreceptors are 
genetically matched to the patient, which can 
reduce immune rejection (36). Disease 
modelling: iPSCs are used to model retinal 
diseases in vitro and screen therapeutic 
compounds (37).  
 
Cell replacement: In animal models, iPSC-
derived photoreceptors restore light 
responses and visual function. (29) 
 
Retinal Progenitor Cells (RPCs) 
Overview: RPCs are multipotent fetal or 
neonatal retinal cells that have the capacity to 
differentiate into photoreceptors, bipolar cells, 
and glia. 
 
Mechanisms of Action - Host retinal 
integration: RPCs migrate to the outer nuclear 
layer and differentiate into photoreceptor-like 
cells (36). Paracrine support: RPCs secrete 
neurotrophic factors (CNTF, BDNF) that 
protect host photoreceptors from 
degeneration (22).  
 

Synaptic connection: Synaptic development 
with pre-existing retinal neurons is indicated 
by certain studies (38). 
 
Mesenchymal Stem Cells (MSCs) 
Overview: MSCs are multipotent stromal cells 
that are derived from bone marrow, adipose 
tissue, umbilical cord, or dental pulp. They do 
not tend to differentiate into photoreceptors 
but have strong paracrine and 
immunomodulatory activity. 
Mechanisms of Action - Neuroprotection: 
BDNF, NGF, and VEGF release sustains retinal 
cell survival (31). Immunomodulation: MSCs 
inhibit pro-inflammatory cytokines and 
microglia activation (39).  
 
Angiogenesis: MSC-derived factors can cause 
revascularization in ischemic retinopathies 
(40). 
 
Müller Glia–Derived Stem/Progenitor Cells 
Overview: In lower vertebrates like zebrafish, 
Müller glia have the ability to regenerate 
retinal neurons after injury. In mammals, they 
can be reprogrammed into a progenitor-like 
state. 
 
Mechanisms of Action - Endogenous 
regeneration: Transcription factor activation 
(Ascl1, Pax6) can trigger neurogenesis (33).  
 
Supportive function: In the absence of 
complete differentiation, Müller glia are 
structural and metabolic supports to retinal 
neurons. 
 
Endothelial Progenitor Cells (EPCs) 
Overview: EPCs are circulating precursors with 
the ability to differentiate into vascular 
endothelial cells. 
 
Mechanisms of Action - Vascular repair: EPCs 
are incorporated into injured retinal capillaries 
and induce neovascularization in ischemic 
tissue (41).  
Paracrine action: They secrete angiogenic 
factors such as VEGF and angiopoietin. 
 
Clinical Trials, and Market Studies 
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TABLE-2: CLINICAL TRIALS 

Age-related macular degeneration 
Clinical Trial Name Study Method Most Important Finding 
Nittala MG et al., 2021 
— HuCNS-SC in GA 

Subretinal transplantation of human 
CNS stem cells (HuCNS-SC) in 
non-neovascular AMD with 
geographic atrophy (42) 

In this small pilot, HuCNS-SC 
transplantation appeared associated 
with slower expansion of GA in the 
transplanted quadrant. (42) 

Kashani AH et al., 2022 
— HLA-mismatched 
bioengineered RPE 
implant 

Subretinal polarized hESC-RPE 
monolayer (phase 1/2a) (43) 

Survival of HLA-mismatched RPE grafts; 
safety with preliminary 
structural/functional signals (43) 

Kashani AH et al., 2018 
— Bioengineered RPE 
monolayer 

Subretinal RPE monolayer for 
advanced dry AMD (44) 

Safety and structural evidence of graft 
survival (44) 

da Cruz L et al., 2018 — 
hESC-RPE pat 

Subretinal hESC-RPE patch (45) Patch survival with visual function 
support in severe AMD (45) 

Diabetic Retinopathy 
Wu Z et al., 2022 — UC-
MSC + aBM-MNC in T1D 

RCT (42 patients); UC-MSC + 
autologous BM-MNC 
transplantation vs standard care; 8-
year follow-up. (46) 

Significantly fewer complications: 
neuropathy (7.1% vs 46.7%), 
nephropathy (7.1% vs 40%), retinopathy 
(7.1% vs 33.3%); no malignancies. (46) 

Bonora BM et al., 2021 
— Fenofibrate & HSPCs 
in DR 

12-week double-blind RCT; 42 
patients with DR randomized to 
fenofibrate or placebo; primary 
endpoint = circulating HSPC levels 
(CD34+/CD133+). (47) 

Fenofibrate significantly increased 
circulating HSPCs, suggesting a 
mechanism for reduced DR progression. 
(47) 

Glaucoma 
Vilela CAP et al., 2021 — 
Intravitreal autologous 
BMSC in advanced 
glaucoma 

Phase I pilot study; two patients 
with advanced glaucoma received a 
single intravitreal injection of 
autologous bone marrow–derived 
MSCs; ERG and visual function 
monitored post-injection. (48) 

No ERG response change observed; one 
case developed a complication; no 
functional improvement. Authors suggest 
modified MSCs may be required for 
therapeutic effect. (48) 

Mao J et al., 2024 — 
ACA status vs limbal 
stem cell deficiency in 
PACG 

Cross-sectional observational study 
including 54 PACG eyes and 54 
controls; UBM used to assess 
anterior chamber angle state; IVCM 
used to measure limbal epithelial 
basal cell density. (49) 

PACG eyes with narrower/closed ACA 
had significantly reduced limbal epithelial 
basal cell density compared to controls, 
establishing a structural link between 
angle status and limbal stem cell 
deficiency. (49) 

Khatib TZ et al., 2019 — 
Hemoglobin video 
imaging of aqueous 
outflow 

Prospective imaging study: high-
resolution hemoglobin video 
imaging integrated into routine slit-
lamp examination to quantify 
aqueous outflow before and after 
intervention. (50) 
 

Hemoglobin video imaging enables real-
time slit-lamp–based quantification of 
aqueous outflow, with potential to guide 
targeted therapies and advance 
understanding of outflow dysregulation 
in glaucoma (50) 

Güçlü H et al., 2021 — 
Corneal/limbal 
alterations from 
glaucoma meds 

Case–control study; glaucoma 
patients on long-term topical 
therapy compared with healthy 
controls; anterior segment OCT used 
to evaluate corneal epithelium and 
limbal region alterations. (46) 

Long-term topical therapy associated 
with measurable limbal epithelial and 
corneal changes on AS-OCT (46) 

Retinitis pigmentosa 
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Age-related macular degeneration 
Clinical Trial Name Study Method Most Important Finding 
Zhu T et al., 2021 — 
USH2A variants in 
RP/Usher II 

Genetic profiling of a large Chinese 
cohort of RP/Usher II patients (51) 

Defined USH2A variant spectrum and 
genotype–phenotype correlations (51) 
 

Zhao T et al., 2020 — IV 
infusion of UC-MSCs in 
advanced RP 

Phase I/II trial; intravenous infusion 
of UC-MSCs in advanced RP (52) 

Intravenous infusion of UC-MSCs showed 
no significant adverse effects (52) 
 

Tuekprakhon A et al., 
2021 — Intravitreal 
autologous MSCs in RP 

Non-randomized phase I; 
intravitreal autologous MSC 
injection in RP patients (53) 

Treatment was safe and feasible, with 
early signals of functional benefit (53) 

Özmert E et al., 2020 — 
Wharton’s jelly MSCs in 
RP 

Prospective 1-year study; Wharton’s 
jelly MSC transplantation in RP (54) 

Visual and structural improvements 
correlated with inheritance patterns (54) 

 
Market Status and Most Successful Clinical 
Outcomes of Stem Cell Therapy in Retinal 
Disorders: 
Market Translation (Approved/Regulatory-
Ready Therapies) 
To date, there are no stem cell–derived 
products officially approved for routine clinical 
use in AMD, RP, DR, or glaucoma. The only 
FDA-approved therapy in the inherited retinal 
disease category remains gene therapy for 
RPE65-led RP, as well as retinal prostheses for 
end-stage RP, not stem cells. Stem cell therapy 
for these disorders remains, therefore, 
experimental, with translation limited to early- 
to mid-stage clinical trials (55,56) 
 
Most Successful Clinical Evidence to Date 
Despite the absence of approved products, 
several stem cell approaches have consistently 
demonstrated safety and functional benefits 
across clinical trials. In AMD, transplants of 
human embryonic stem cell–derived retinal 
pigment epithelium (hESC-RPE) have enhanced 
visual acuity and preserved graft survival, free 
from tumorigenicity(23,57). Autologous 
induced pluripotent stem cell–derived retinal 
pigment epithelium grafts in neovascular AMD 
were safe and preserved retinal structure and 
visual stability for four years (45). In RP, a 
Phase III trial of suprachoroidal umbilical cord–
derived mesenchymal stem cells (UC-MSCs) in 
82 patients demonstrated improved or 
stabilised vision in approximately 90% of 
treated eyes, with no severe adverse events 
reported (58). Small RP trials of Wharton's 
jelly–derived MSCs and bone marrow–derived 
MSCs also showed improvements in short-
term best-corrected visual acuity and retinal 

thickness(59). In DR, the administration of 
intravenous or intravitreal MSCs has been 
demonstrated to reduce vascular leakage, 
improve neurotrophic support, and improve 
BCVA in early-stage patients without immune 
complications. Despite the paucity of 
glaucoma trials, MSC-derived paracrine factors 
and preclinical studies offer a neuroprotective 
advantage for retinal ganglion cells, providing 
a translational basis. As a whole, these results 
put ESC/iPSC-RPE grafts for AMD and MSC-
based therapies for RP and DR on the most 
clinically advanced trajectories towards being 
market-ready(60). 
 
Benefits 
Histological engraftment of RPE has been 
repeatedly reported. Long-term pigmentation 
and OCT findings of stable monolayer under 
atrophy/scar in AMD patients and in CPCB-
RPE1 implantation have been reported. 
(57,44,61) 
 
Practical functional benefit can be achieved in 
some situations. Engineered RPE patch 
transplanted subretinally recorded +29/+21 
letters at 12 months in advanced neovascular 
AMD with on-patch survival. (45) 
 
Photoreceptor support can improve vision in 
RP. Intravitreal hRPC (gene-agnostic) caused 
dose-dependent BCVA gain and secondary 
measures (contrast sensitivity, mobility, VFQ) 
in a randomised Phase 2b trial and subgroup 
analyses. (62) 
 
Paracrine and vasculotropic strategies seem 
plausible and secure. Intravitreal 
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administration of autologous CD34+ cells (pilot 
Phase 1) demonstrated favourable ocular 
tolerability alongside preliminary imaging 
indicators. (63) 
 
CONCLUSION 
Stem cell-based therapies have revolutionary 
promise for the management of degenerative 
retinal disease like AMD, RP, glaucoma, and 
diabetic retinopathy, wherein traditional 
therapies are mainly palliative. Across varied 
preclinical and early clinical trials, stem cell 
strategies such as mesenchymal stromal cells, 
retinal pigment epithelium, and retinal 
progenitor cells have demonstrated promising 
evidence of safety, neuroprotection, and 
structural integration with variable efficacy. 
Notably, such studies go to emphasize both the 
potential and complexity of regenerative 
strategy translation to long-term visual 
outcomes. Heterogeneity, cell sources, and 
delivery routes imply the need for robust, 
multicenter trials with standardized endpoints. 
Progress in the future will rest not only on 
optimizing cell survival and functional 
integration but also on blocking adverse 
effects and addressing disease-specific 
pathophysiology. Cumulatively, this early 
evidence body places stem cell therapy at the 
cusp of next-generation ophthalmic 
treatments with credible promise toward 
vision restoration in disorders heretofore 
deemed irreversible. 
 
Mechanistic uncertainty (integration vs. 
material transfer). Preclinical evidence 
suggests that "rescue" is donor–host material 
transfer, not true synaptic integration, with 
host context-dependent effects requiring 
lineage-traced readouts and judicious model 
selection. (64,65) Heterogeneous efficacy and 
first-trial size. Benefit across indications is 
restricted and untested in small, early-stage 
populations; no Phase 3 approvals to date. 
(23,62) 
 
Surgical and device complexity for patches 
involves retinotomy and sub foveal handling, 
requiring specialized instruments. Potential 
hazards include tears, haemorrhage, and 
detachment, along with challenges related to 

scalability and access. Immune management is 
crucial; studies involving hESC-RPE commonly 
utilize either peri-systemic or chronic local 
steroids.  Autologous iPSC-RPE was feasible 
but challenging to scale; HLA-matched 
allogeneic iPSC-RPE has shown 1-year safety 
with steroids, but durability/generalizability 
needs to be addressed. (66,67) 
 
Manufacturing/CMC limitations. Lot-to-lot 
variability, potency tests, and cost/time 
(particularly autologous) are still rate-limiting; 
iPSC banks and new-generation platforms are 
useful but create new validation requirements. 
(67,68) 
 
Trial design and endpoints. BCVA might not be 
sufficient to determine localised/functional 
improvement in GA or ultra-low vision; trials 
must include microperimetry, mobility, 
reading speed, contrast, and PROs, biomarker-
guided enrichment (e.g., fixation reliability, EZ 
integrity). (69,62) 
 
Safety outside of regulated trials. Although 
regulated ocular trials are 
teratoma/uncontrolled growth-free, there has 
been severe vision loss following unregulated 
intravitreal "stem-cell" injections placing a high 
value on GMP products and IRB-approved 
protocols. (23,66) 
 
Adverse events (AEs) and safety indicators 
Procedure-related: Subretinal surgery may 
lead to retinal tears/detachment, 
subretinal/choroidal haemorrhage, and 
epiretinal membrane; these occurrences were 
rare in experienced hands and diminished with 
technique improvement. (61,44,45) 
 
Immunologic/tumorigenicity: Teratomas or 
uncontrolled growth have not been seen in any 
of the pluripotent-derived RPE trials thus far; 
AEs were most often caused by surgery or 
immunosuppression (when given). (57,24) 
 
Intravitreal cell safety: intravitreal injections of 
hRPC and CD34+ have shown excellent ocular 
tolerability in randomised controlled clinical 
trials. (34) 
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Warning (beyond controlled trials): Loss of 
vision has occurred due to intravitreal injection 
of untested "stem cells" in for-profit facilities, 
and this highlights the need for controlled, 
GMP-produced material and IRB-approved 
protocols. (66) 
 
Synthesis of current evidence to date 
Throughout early human trials, RPE 
replacement with hESC-RPE suspensions has 
structural evidence of graft survival and 
acceptable safety for ~2 years, and engineered 
RPE patches have clinically significant letter 
improvement in well-selected advanced 
neovascular AMD. Gene-agnostic intravitreal 
hRPC in RP has dose-dependent BCVA gain 
with good tolerability, and autologous CD34+ 
intravitreal therapy is feasible and safe with 
investigational structural signals. Collectively, 
these data establish the biologic plausibility 
and clinical feasibility of stem-cell–based 
retinal therapy.(57,23,45,62,68) 
 
Clinical potential versus present challenges 
If durability and integration problems are 
solved, RPE patches may be a regenerative 
therapy for late AMD with RPE loss, and 
intravitreal progenitor approaches may 
provide gene-agnostic rescue in 
heterogeneous RP. Widespread use is held 
back by immune regulation, surgical 
optimisation, manufacturing/CMC 
standardisation, and endpoint sensitivity 
domains in which the current solutions (HLA-
matched iPSC banks, hypoimmunogenic 
editing, optimised delivery, and multimodal 
endpoints) are excellent but not yet 
complete.(64,71,72,45) 
 
Major Research Shortfalls in Need of 
Attention 
Durability & dose: long-term (>2–5 y) 
survival/function, redosing paradigms, and 
structure–function coupling. (57) 
 
Mechanism: definitive integration vs material 
transfer in humans using lineage-aware assays. 
(64) 
Immunology: randomised comparisons of HLA-
matched vs standard allogeneic cells; first-in-
human hypoimmunogenic PSC derivatives. 4)  

 
Delivery science: head-to-head suspension vs 
monolayer/scaffold for RPE replacement; 
complication-minimising tools. (45)  
 
Endpoints: validated composite outcomes 
(BCVA + microperimetry + mobility/PRO) and 
earlier-stage cohorts to detect disease-
modifying effects. (69)  
 
Safety in real-world settings: registries to 
monitor rare AEs and prevent unregulated 
uses. (66) 
 
FUTURE DIRECTIONS 
• Immune evasion strategies. Two parallel 

approaches are ongoing: (i) HLA-matched 
iPSC-RPE from national/regional iPSC 
banks to reduce rejection with minimal 
systemic immunosuppression; and (ii) 
gene-modified hypoimmunogenic 
("universal") PSCs (e.g., HLA class I/II 
disruption with CD47 overexpression) now 
showing long-term survival in non-human 
primates approaches that may enable off-
the-shelf ocular cell therapies. (70,67) 

• Refinements in delivery. Second-
generation engineered scaffolds/patches 
with improved Bruch's membrane-like 
mimicry, miniaturised incisional strategies, 
and specially designed micro-instruments 
(or robot-assisted) will potentially 
decrease surgical morbidity with 
preservation of polarity and coverage. 
(46,45) 

• Biomarker-stratified patient selection. 
Randomised hRPC data reveal dose-
dependent effects with more potent 
effects in fixation-reliable, anatomy-
matched subgroups; trials need to 
prospectively enrich by 
structural/functional biomarkers (e.g., 
ellipsoid zone integrity, fixation measures). 
(62) 

• Mechanistic readouts and imaging. 
Lineage tracing, human-specific reporters, 
and high-end imaging (e.g., AO-OCT) can 
differentiate integration from paracrine 
rescue and monitor cell–host interactions 
in vivo. (64) 
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• Standardised organoid platforms for 
discovery and QC. hPSC retinal organoids 
allow standardised disease modelling, 
potency assays, and drug screening, and 
can also be used as release-test platforms 
with clinical phenotype concordance. (68) 

• Patient-relevant outcomes. Add 
microperimetry, mobility function, reading 
speed, and PROs to BCVA and OCT, with 
agreement on thresholds of clinically 
important change to facilitate regulatory 
convergence. (69) 
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