Exploring the landscape of Vector-Borne Diseases and Their Vectors in India's Endemic states: Bird’s eye view
Main Article Content
Abstract
Vector-borne diseases (VBDs) persist as a significant public health concern across the globe. Various arthropod vectors play pivotal roles in the transmission of diverse VBDs worldwide, notably mosquitoes, sand flies, blackflies, lice, ticks and tsetse flies. Among all, mosquitoes act as major vector causing mosquito borne diseases (MBDs). Mosquitoes predominantly serve as vectors for neglected tropical diseases, transmitting numerous pathogens due to their large number attributed to the conducive tropical climatic conditions. Understanding the dynamics of vectors (mosquitoes) is imperative for effectively controlling and eliminating mosquito-borne diseases (MBDs). Extensive research conducted across India indicates commendable efforts towards comprehending the nature, prevalence, and breeding patterns of vectors, subsequently implementing measures to curb their proliferation. Endemic Indian states Jharkhand, Odisha, West Bengal, and Chhattisgarh are characterized by substantial forested areas and rugged terrain, emerged as focal points for mosquito-borne diseases (MBDs) including malaria, dengue, filaria, chikungunya etc. Several studies emphasised how important it is to comprehend the presence and distribution of vectors in order to mitigate infections and eliminate them within the designated time limit. Earlier studies conducted in these endemic states of India gives an idea of presence of different vector species and their subspecies. This review is an attempt to offer important new information about MBDs, their status, and the vector prevalence in Jharkhand and other endemic areas of India. The review emphasizes the critical need for unified and collaborative efforts to tackle these diseases, both at the regional and national levels, by integrating various disciplines and strategies.
Downloads
Article Details
Section
How to Cite
References
1. Bharti, P. K., Chandel, H. S., Ahmad, A., Krishna, S., Udhayakumar, V., & Singh, N. (2016). Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India. PloS One, 11(8), e0157949. https://doi.org/10.1371/journal.pone.0157949
2. Hussain, S. S. A., & Dhiman, R. C. (2022). Distribution expansion of dengue vectors and climate change in India. Geohealth, 6(6). https://doi.org/10.1029/2021gh000477
3. INDIA. (2024). Malaria situation. https://ncvbdc.mohfw.gov.in/WriteReadData/l892s/73684997071710501582.pdf
4. Insect-Borne diseases in the 21st century. (n.d.). ScienceDirect. https://www.sciencedirect.com/book/9780128187067/insect-borne-diseases-in-the-21st-century
5. Duval, L. (2022). Climate change, Vector-Borne diseases, and migration. In Springer eBooks (pp. 1–15). https://doi.org/10.1007/978-3-319-57365-6_247-1
6. Kaliappan, A., Lakshmi, J. T., Shireen, N. S., Vidya, M. S., Supriya, G., Saranya, M., Sagar, S. T., & Chenna, K. (2022). Vector-Borne Diseases amidst COVID-19 Pandemic in India - A Mini-Review. PubMed, 17(1), 201–204. https://doi.org/10.26574/maedica.2022.17.1.201
7. Kancharla, B., & Kancharla, B. (2021, December 17). Data: Number of cases of ‘Vector-Borne Diseases’ increase in 2021 after a fall in 2020. FACTLY. https://factly.in/data-number-of-cases-of-vector-borne-diseases-increase-in-2021-after-a-fall-in-2020/
8. Sutherst, R. (2004). Global change and human vulnerability to Vector-Borne diseases. Clinical Microbiology Reviews. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC321469/
9. Rao, M. R. K., & Das, M. K. (2021). Malaria among the Sauria Paharia, a primitive and vulnerable tribe of Jharkhand state, India. Clinical Epidemiology and Global Health, 11, 100778. https://doi.org/10.1016/j.cegh.2021.100778
10. Kareemi, T. I., Nirankar, J. K., Mishra, A. K., Chand, S. K., Chand, G., Vishwakarma, A. K., Tiwari, A., & Bharti, P. K. (2021). Population Dynamics and Insecticide Susceptibility of Anopheles culicifacies in Malaria Endemic Districts of Chhattisgarh, India. Insects, 12(4), 284. https://doi.org/10.3390/insects12040284
11. Kumar, C., Kumar, D., Kumar, A., Kumar, V., & Sircar, S. (2023). Coverage of mass drug administration (MDA) and operational issues in elimination of lymphatic filariasis in selected districts of Jharkhand, India. Journal of Family Medicine and Primary Care, 12(1), 111. https://doi.org/10.4103/jfmpc.jfmpc_1149_22
12. Kumar, M., Seema, K., Sinha, N., & Singh, S. (2021). CHIKUNGUNYA OUTBREAKS IN JHARKHAND: a MAJOR PUBLIC HEALTH DISASTER. GLrOBAL JOURNAL FOR RESEARCH ANALYSIS, 46–48. https://doi.org/10.36106/gjra/9408626
13. LaBeaud, A. D. (2008). Why arboviruses can be neglected tropical diseases. PLOS Neglected Tropical Diseases, 2(6), e247. https://doi.org/10.1371/journal.pntd.0000247
14. Ma, J., Guo, Y., Gao, J., Tang, H., Xu, K., Liu, Q., & Xu, L. (2022). Climate change drives the transmission and spread of Vector-Borne diseases: An Ecological perspective. Biology (Basel), 11(11), 1628. https://doi.org/10.3390/biology11111628
15. Manikandan, S., Mathivanan, A., Bora, B., Hemaladkshmi, P., Abhisubesh, V., & Poopathi, S. (2022). A review on Vector borne disease transmission: Current strategies of mosquito vector control. Indian Journal of Entomology, 1–11. https://doi.org/10.55446/ije.2022.593
16. MoHFW. (n.d.). DENGUE SITUATION IN INDIA :: National Center for Vector Borne Diseases Control (NCVBDC). https://ncvbdc.mohfw.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715
17. MoHFW. (2022). Annual report. In Ministry of Health and Family Welfare. https://main.mohfw.gov.in/sites/default/files/FinalforNetEnglishMoHFW040222.pdf
18. Nath, A. (2022). A study of malaria in Jharkhand state. Indian Journal of Community Health (Print), 34(1), 11–13. https://doi.org/10.47203/ijch.2022.v34i01.003
19. NCVBDC. (n.d.). Filaria :: National Center for Vector Borne Diseases Control (NCVBDC). https://ncvbdc.mohfw.gov.in/index1.php?lang=1&level=1&sublinkid=5777&lid=3691
20. Nyari, N., Singh, D., Kakkar, K., Sharma, S., Pandey, S., & Dhole, T. N. (2015). Entomological and serological investigation of Japanese encephalitis in endemic area of eastern Uttar Pradesh, India. DOAJ (DOAJ: Directory of Open Access Journals), 52(4), 321–328. https://doaj.org/article/a54ecd7df7514ac38c4d866183a9a0d2
21. Pandey, S., Das, M., Singh, R., & Dhiman, R. C. (2015). Anopheline mosquitoes in District Ramgarh (Jharkhand), India. PubMed, 52(3), 232–238. https://pubmed.ncbi.nlm.nih.gov/26418654
22. Regional Data and Trends Briefing Kit World Malaria Report 2023. (2023). In WHO. WHO. https://www.who.int/publications/m/item/WHO-UCN-GMP-2023.08
23. Sahu, S. K., Dash, S., Thankachy, S., Muthukumaravel, S., Sankari, T., & Jambulingam, P. (2018). Entomological investigation of Japanese encephalitis outbreak in Malkangiri district of Odisha state, India. Memórias Do Instituto Oswaldo Cruz (Impresso), 113(6). https://doi.org/10.1590/0074-02760170499
24. Das, M. K., Rahi, M., Dhiman, R. C., & Raghavendra, K. (2021). Insecticide susceptibility status of malaria vectors, Anopheles culicifacies, Anopheles fluviatilis and Anopheles minimus in the tribal districts of Jharkhand state of India. Journal of Vector Borne Diseases, 58(4), 374. https://doi.org/10.4103/0972-9062.325641
25. Singh, R., Das, M. K., Dhiman, R. C., Mittal, P. K., & Sinha, A. (2008). Preliminary investigation of dengue vectors in Ranchi, India. DOAJ (DOAJ: Directory of Open Access Journals), 45(2), 170–173. https://doaj.org/article/34d7222b8c1b4edca3302f68332b1d43
26. Sunil, S. (2021). Current status of chikungunya in India. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.695173
27. Thankachy, S., Dash, S., Muthukumaravel, S., Sankari, T., Balakrishnan, V., & Sahu, S. K. (2022). Analysis of entomological indices for transmission of Japanese encephalitis in Malkangiri district, Odisha State, east central India during 2015–2019. Pathogens and Global Health (Print), 117(1), 92–98. https://doi.org/10.1080/20477724.2022.2071051
28. WHO. (2014). Fact sheet on vector borne diseases in India.
29. WHO. (2023). World Malaria Report 2023. https://www.who.int/publications/i/item/9789240086173
30. Data and Maps | Dengue | CDC. (n.d.). https://www.cdc.gov/dengue/statistics-maps/data-and-maps.html
31. Djiappi-Tchamen, B., Nana-Ndjangwo, M. S., Tchuinkam, T., Makoudjou, I., Nchoutpouen, E., Kopya, E., Talipouo, A., Bamou, R., Mayi, M. P. A., Awono-Ambene, P., Wondji, C. S., & Antonio-Nkondjio, C. (2021). Aedes Mosquito Distribution along a Transect from Rural to Urban Settings in Yaoundé, Cameroon. Insects, 12(9), 819. https://doi.org/10.3390/insects12090819
32. Lemon, S. M., Sparling, P. F., Hamburg, M., Relman, D. A., Choffnes, E. R., Mack, A., & Sparling, F. (2008). Vector-Borne Diseases: Understanding the environmental, Human health, and Ecological Connections: Workshop summary. https://www.amazon.com/Vector-Borne-Diseases-Understanding-Environmental-Connections/dp/0309108977
33. Ministry of Health & Family Welfare-Government of India. (n.d.). MAGNITUDE OF THE PROBLEM :: National Center for Vector Borne Diseases Control (NCVBDC). https://ncvbdc.mohfw.gov.in/index4.php?lang=1&level=0&linkid=420&lid=3699
34. MoHFW. (n.d.). JAPANESE ENCEPHALITIS VECTORS IN INDIA :: National Center for Vector Borne Diseases Control (NCVBDC). https://ncvbdc.mohfw.gov.in/index1.php?lang=1&level=2&sublinkid=5923&lid=3756
35. Nicoletti, M. (2020). Three scenarios in insect-borne diseases. In Elsevier eBooks (pp. 99–251). https://doi.org/10.1016/b978-0-12-818706-7.00005-x
36. Sahana. (2018, September 28). Higher average temperatures linked to chikungunya risk in India. Mongabay-India. https://india.mongabay.com/2018/09/higher-average-temperatures-linked-to-chikungunya-risk-in-india/
37. Servadio, J. L., Rosenthal, S. R., Carlson, L., & Bauer, C. (2018). Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia. Journal of Infection and Public Health, 11(4), 566–571. https://doi.org/10.1016/j.jiph.2017.12.006
38. Subbarao, S. K., Nanda, N., Rahi, M., & Raghavendra, K. (2019). Biology and bionomics of malaria vectors in India: existing information and what more needs to be known for strategizing elimination of malaria. Malaria Journal, 18(1). https://doi.org/10.1186/s12936-019-3011-8
39. World Health Organization: WHO. (2022, December 8). Zika virus. https://www.who.int/news-room/fact-sheets/detail/zika-virus
40. VL/LF UPDATE. (2022). Message From Director, NVBDCP, 4(4). https://ncvbdc.mohfw.gov.in/Doc/Newsletter-13-May.pdf
41. Advances in Parsitology (2013th ed., Vol. 83). (2013). Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780124077058000033
42. Bueno‐Marí, R., & Jiménez-Peydró, R. (2013). Global change and human vulnerability to vector-borne diseases. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00158
43. Control of Neglected Tropical Diseases (NTD). (2021, October 15). Global programme to eliminate lymphatic filariasis: progress report, 2020. https://www.who.int/publications/i/item/who-wer9641-497-508
44. Mohan, A., Wara, U. U., Amjad, S. W., Rackimuthu, S., Hunain, R., Khan, H., Costa, A. C. D. S., Ahmad, S., & Essar, M. Y. (2021). Malaria amidst COVID-19 in India: Challenges, Efforts, and Recommendations. Clinical Epidemiology and Global Health, 12, 100867. https://doi.org/10.1016/j.cegh.2021.100867
45. Acharya, A., Rakshit, A., Halder, S., Chatterjee, M., Chakrabarti, S., Saha, P., Bera, D. K., Chakraborty, B., Kundu, P. K., Ghosh, T. K., & Maji, A. K. (2020). Coexistent malaria and filaria among the febrile patients attending for malaria diagnosis: A clinic-based study. Tropical Parasitology, 10(2), 109. https://doi.org/10.4103/tp.tp_93_20
46. Banerjee, S., Aditya, G., & Saha, G. K. (2015). Household Wastes as Larval Habitats of Dengue Vectors: Comparison between Urban and Rural Areas of Kolkata, India. PloS One, 10(10), e0138082. https://doi.org/10.1371/journal.pone.0138082
47. Sinha, S., Gahtori, R., Kumari, P. et al. A Novel Multiplex RT-PCR for Simultaneous Detection of Malaria, Chikungunya and Dengue Infection (MCD-RT-PCR). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 93, 755–761 (2023). https://doi.org/10.1007/s40011-023-01447-6
48. Bharati, M., & Saha, D. (2018). Multiple insecticide resistance mechanisms in primary dengue vector, Aedes aegypti (Linn.) from dengue endemic districts of sub-Himalayan West Bengal, India. PloS One, 13(9), e0203207. https://doi.org/10.1371/journal.pone.0203207
49. Chatterjee, S., Chakraborty, A., & Sinha, S. K. (2015). Spatial distribution & physicochemical characterization of the breeding habitats of Aedes aegypti in & around Kolkata, West Bengal, India. Indian Journal of Medical Research, 142(7), 79. https://doi.org/10.4103/0971-5916.176631
50. Das, B., Patra, A., Das, M., Mahapatra, N., Tripathy, H., Kar, S., & Hazra, R. K. (2014). Vectorial capacity and genetic diversity of Anopheles annularis (Diptera: Culicidae) mosquitoes in Odisha, India from 2009 to 2011. Acta Tropica, 137, 130–139. https://doi.org/10.1016/j.actatropica.2014.05.002
51. Debnath, F., Ponnaiah, M., & Acharya, P. (2017). Dengue fever in a municipality of West Bengal, India, 2015: An outbreak investigation. Indian Journal of Public Health/Indian Journal of Public Health, 61(4), 239. https://doi.org/10.4103/ijph.ijph_309_16
52. Dwibedi, B., Mohapatra, N., Rathore, S. K., Panda, M. K., Pati, S. S., Sabat, J., Thakur, B., Panda, S., & Kar, S. K. (2015). An outbreak of Japanese encephalitis after two decades in Odisha, India. Indian Journal of Medical Research, 142(7), 30. https://doi.org/10.4103/0971-5916.176609
53. Hati, A. K., Bhattacharjee, I., Mukherjee, H., Bandyopadhayay, B., Bandyopadhyay, D., De, R., & Chandra, G. (2012). Concurrent dengue and malaria in an area in Kolkata. Asian Pacific Journal of Tropical Medicine, 5(4), 315–317. https://doi.org/10.1016/s1995-7645(12)60046-7
54. Kumari, P., Sinha, S., Gahtori, R., Yadav, C. P., Pradhan, M. K., Rahi, M., Pande, V., & Anvikar, A. R. (2020). Prevalence of asymptomatic malaria parasitemia in Odisha, India: A challenge to malaria elimination. the American Journal of Tropical Medicine and Hygiene, 103(4), 1510–1516. https://doi.org/10.4269/ajtmh.20-0018
55. Kumari, S., Das, S., & Mahapatra, N. (2013). Anopheles subpictus B and its role in transmission of malaria in Odisha, India. PubMed, 30(4), 710–717. https://pubmed.ncbi.nlm.nih.gov/24522142
56. Mandal, B., Biswas, B., Atanu, B., Mukherjee, T. K., Nandi, J., & Biswas, D. (2011). Breeding propensity of Anopheles stephensi in chlorinated and rainwater containers in Kolkata City, India. PubMed, 48(1), 58–60. https://pubmed.ncbi.nlm.nih.gov/21406739
57. Mariappan, T., Samuel, P., Thenmozhi, V., Paramasivan, R., Sharma, P. K., Biswas, A. K., & Tyagi, B. K. (2014). Entomological investigations into an epidemic of Japanese encephalitis (JE) in northern districts of West Bengal, India (2011-2012). PubMed. https://pubmed.ncbi.nlm.nih.gov/25027086
58. Mishra, M. M., Sahu, N., Mallick, G., & Pani, B. (2023). Trend of malaria incidences and its association with rainfall in Kalahandi District of Odisha, India. PubMed, 67(1), 166–169. https://doi.org/10.4103/ijph.ijph_916_22
59. Pramanik, M. K., Aditya, G., & Raut, S. K. (2006). A survey of anopheline mosquitoes and malarial parasite in commuters in a rural and an urban area in West Bengal, India. PubMed, 43(4), 198–202. https://pubmed.ncbi.nlm.nih.gov/17175707
60. Rani, A., Gupta, A., Sinha, S., Nagpal, B. N., Singh, H., Kate, V., Gupta, S. K., Mehta, S. S., Srivastava, A., Anvikar, A., Saxena, R., & Valecha, N. (2017). Malaria epidemiology in changing scenario and anopheles vector in Ghaziabad district, Uttar Pradesh, India. International Journal of Mosquito Research, 4(6), 56–64. https://www.dipterajournal.com/pdf/2017/vol4issue6/PartA/4-6-4-246.pdf
61. Saha, P., Dey, A., Biswas, A., Jana, K., & Maji, A. (2022). Assessment of knowledge about malaria and LLIN ownership and its use in Bankura, West Bengal. Journal of Vector Borne Diseases, 0(0), 0. https://doi.org/10.4103/0972-9062.361164
62. Sahu, S. K., Gunasekaran, K., Nallan, K., Vanamail, P., Ashokkumar, M., Manonmani, A., & Jambulingam, P. (2017). Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in Relation to Malaria Transmission in East-Central India. Journal of Medical Entomology, 54(4), 821–830. https://doi.org/10.1093/jme/tjx065
63. Sahu, S. K., Sonia, T., Dash, S., Gunasekaran, K., & Jambulingam, P. (2018). Insecticide resistance status of three vectors of Japanese encephalitis in east central India. Medical and Veterinary Entomology, 33(2), 213–219. https://doi.org/10.1111/mve.12352
64. Sengupta, S., Mukherjee, S., Haldar, S. K., Bhattacharya, N., & Tripathi, A. (2020). Re-emergence of Chikungunya virus infection in Eastern India. Brazilian Journal of Microbiology, 51(1), 177–182. https://doi.org/10.1007/s42770-019-00212-0
65. Subhadra, S., Sabat, J., Dwibedi, B., Panda, S., Mandal, M. C., Rath, S., Ho, L. M., Palo, S. K., Pati, S., & Turuk, J. (2021). Prevalence and trend of emerging and re-emerging arboviral infections in the state of Odisha. Virusdisease, 32(3), 504–510. https://doi.org/10.1007/s13337-021-00730-2
66. Thankachy, S., Dash, S., & Sahu, S. K. (2019). Entomological factors in relation to the occurrence of Japanese encephalitis in Malkangiri district, Odisha State, India. Pathogens and Global Health, 113(5), 246–253. https://doi.org/10.1080/20477724.2019.1670926
67. Panda, B. B., Mohanty, I., Rath, A., Pradhan, N., & Hazra, R. K. (2019). Perennial malaria transmission and its association with rainfall at Kalahandi district of Odisha, Eastern India: A retrospective analysis. Tropical Biomedicine, 36(3), 610–619. https://www.ncbi.nlm.nih.gov/pubmed/33597483
68. Pradhan, N., Rath, A., Mohanty, I., Panda, B. B., & Hazra, R. K. (2019). A comparative study of prevalence and spatial distribution of major Anopheline vector fauna in a hyper- and a hypomalaria endemic district of Odisha, India with special reference to onset of first wet season. Tropical Biomedicine, 36(1), 209–223. https://www.ncbi.nlm.nih.gov/pubmed/33597441
69. Gunasekaran, K., Sahu, S. K., Vijayakumar, T., Subramanian, S., & Jambulingam, P. (2018). Bio-efficacy of LifeNet, a deltamethrin incorporated long-lasting insecticidal net, as assessed in experimental huts against Anopheles fluviatilis, a major malaria vector in east-central India. Acta Tropica, 187, 151–157. https://doi.org/10.1016/j.actatropica.2018.08.004
70. Jagadesh, Anitha & Jayaram, Anup & Naren Babu, N. & Paul Mudgal, Piya & Sudandiradas, Robin & Sheik, Shahin & Shetty, Ujwal & Verma, Dileep & Mahilkar, Shakuntala & Sunil, Sujatha & Ibemgbo, Sylvester & Prabhudutta, Mamidi & Singh, Sharad & Chattopadhyay, Soma & Pani, Sweta & Mishra, Bijayanthimala & Ratho, R. & Shastri, Jayanthi & Agrawal, Sachee. (2021). Current Status of Chikungunya in India. Frontiers in microbiology. 12. 10.3389/fmicb.2021.695173.
71. Nchoutpouen, E., Talipouo, A., Djiappi-Tchamen, B., Djamouko-Djonkam, L., Kopya, E., Ngadjeu, C. S., Doumbe-Belisse, P., Awono-Ambene, P., Kekeunou, S., Wondji, C. S., & Antonio-Nkondjio, C. (2019). Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Neglected Tropical Diseases, 13(4), e0007229. https://doi.org/10.1371/journal.pntd.0007229
72. Neiderud, C. (2015). How urbanization affects the epidemiology of emerging infectious diseases. Infection Ecology & Epidemiology, 5(1), 27060. https://doi.org/10.3402/iee.v5.27060 Quintanilla, N. (2022). Outbreaks of vector-borne infectious disease following a natural disaster. Georgetown Medical Review, 6(1). https://doi.org/10.52504/001c.38768
73. Tripathi, P. K., Soni, A., Yadav, S. P. S., Kumar, A., Gaurav, N., Raghavendhar, S., Sharma, P., Sunil, S., Ashish, Jayaram, B., & Patel, A. K. (2020). Evaluation of novobiocin and telmisartan for anti-CHIKV activity. Virology, 548, 250–260. https://doi.org/10.1016/j.virol.2020.05.010
74. Facchinelli, L., Badolo, A., & McCall, P. J. (2023). Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission. Viruses, 15(3), 636. https://doi.org/10.3390/v15030636
75. Quintanilla, N. (2022). Outbreaks of vector-borne infectious disease following a natural disaster. Georgetown Medical Review, 6(1). https://doi.org/10.52504/001c.38768
76. Khan, A. M. (2018). Lymphatic filariasis elimination programme in Assam, India, needs change in mass drug administration strategy to target the focus of infection. Indian Journal of Medical Research, 147(1), 7. https://doi.org/10.4103/ijmr.ijmr_1843_16
77. Naik, B. R., Tyagi, B. K., & Xue, R. (2023). Mosquito-borne diseases in India over the past 50 years and their Global Public Health Implications: A Systematic Review. Journal of the American Mosquito Control Association, 39(4), 258–277. https://doi.org/10.2987/23-7131
78. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva: World Health Organization; 2009. 3, VECTOR MANAGEMENT AND DELIVERY OF VECTOR CONTROL SERVICES. Available from: https://www.ncbi.nlm.nih.gov/books/NBK143163
79. Shrivastava, A., Soni, M., Shrivastava, S., Sharma, S., Dash, P. K., Gopalan, N., Behera, P. K., & Parida, M. M. (2014). Lineage shift of dengue virus in Eastern India: an increased implication for DHF/DSS. Epidemiology and Infection, 143(8), 1599–1605. https://doi.org/10.1017/s0950268814002751