

ORIGINAL ARTICLE

Global Policy and Frameworks for Assistive Technology in Eye Care

Kritika Chopra, Sangeeta Abrol, Nishi Satish

Department of Ophthalmology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi

CORRESPONDING AUTHOR

Dr Kritika Chopra, Department of Ophthalmology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, Delhi 110029

Email: drkritikachopra@gmail.com

CITATION

Chopra K, Abrol S, Satish N. Global Policy and Frameworks for Assistive Technology in Eye Care. Journal of the Epidemiology Foundation of India. 2025;3(1Suppl):46-53.

DOI: <https://doi.org/10.56450/JEFI.2025.v3i1Suppl.007>

ARTICLE CYCLE

Received: 04/11/2025; Accepted: 09/12/2025; Published: 31/12/2025

This work is licensed under a Creative Commons Attribution 4.0 International License.

©The Author(s). 2025 Open Access

ABSTRACT

This chapter examines the global policy landscape for assistive technology (AT) in eye care, analyzing frameworks established by the World Health Organization (WHO) and their implementation across diverse healthcare systems. Drawing from recent literature spanning 2018-2024, this analysis explores the WHO Global Report on Assistive Technology (2022), the Global Cooperation on Assistive Technology (GATE) initiative, and their integration with Vision 2020 and the Integrated People-Centered Eye Care (IPEC) framework. The chapter critically examines policy challenges including accessibility, affordability, and equity gaps across low- and middle-income countries (LMICs), regulatory frameworks for emerging digital technologies, and implementation models ranging from community-based delivery to tele-rehabilitation services. Through comparative analysis of case studies from India, The Gambia, and European contexts, this chapter identifies key barriers to AT access and proposes evidence-based policy recommendations for achieving universal health coverage goals in vision care.

KEYWORDS

Global Policy; WHO; IPEC; Assistive Technology

INTRODUCTION

Visual impairment affects over 2.2 billion people globally, with approximately 1 billion cases being preventable or treatable.(1,2,3) Assistive technology in eye care encompasses a broad spectrum of devices, services, and interventions designed to maintain or improve the functioning and independence of individuals with visual impairment from basic optical devices like spectacles to sophisticated AI-powered navigation systems representing a

critical bridge between clinical treatment and functional rehabilitation in vision care.

The global burden of visual impairment disproportionately affects populations in low- and middle-income countries, where 90% of vision loss occurs despite being largely preventable.(3) This disparity underscores the urgent need for comprehensive policy frameworks that can guide the development, regulation, and equitable distribution of assistive technologies for eye care. The World Health Organization has positioned assistive

technology as a fundamental component of universal health coverage, recognizing its potential to transform lives and reduce healthcare costs when appropriately implemented.

This chapter provides a critical analysis of current global policy frameworks for assistive technology in eye care, examining their theoretical foundations, practical implementation challenges, and real-world outcomes. Through systematic review of recent literature and policy documents, we explore how international frameworks translate into national policies and local interventions, identifying gaps between policy intentions and implementation realities.

Global Landscape: WHO Frameworks and International Initiatives

The WHO Global Report on Assistive Technology (2022): The WHO Global Report on Assistive Technology represents a landmark policy document that positions assistive technology as an essential health system function requiring integration across service delivery, data systems, financing, and workforce planning. There is emphasis on addressing the massive unmet need for vision-related products and services globally.

The report identifies five critical areas for AT system strengthening: policy development, product provision, personnel training, procurement mechanisms, and partnership building. For vision care specifically, the framework emphasizes the need for integrated approaches that link rehabilitation and AT services into primary-to-tertiary health platforms to improve coverage and outcomes.⁽⁴⁾ This integration model represents a significant departure from traditional siloed approaches to vision care, recognizing that AT provision requires coordination across multiple health system components.

Key findings from the WHO report highlight that over 1 billion people currently need assistive products, with this number expected to exceed 3.5 billion by 2050 due to population aging and increasing prevalence of noncommunicable diseases.

The GATE Initiative: Building Global Cooperation: The Global Cooperation on Assistive Technology (GATE) initiative, launched by WHO in 2014, provides a collaborative platform for improving access to high-quality, affordable assistive products globally. GATE's approach to vision care emphasizes the development of national AT ecosystems that include policy frameworks, provision systems, procurement mechanisms, and data collection systems for priority products.^(5,6)

The GATE initiative has established a priority assistive products list (APL) that includes essential vision-related technologies such as spectacles, magnifiers, white canes, and screen readers.

GATE's implementation framework emphasizes the importance of local context adaptation, recognizing that successful AT programs must account for cultural preferences, economic constraints, and existing health system capabilities. This approach has proven particularly relevant for vision care, where user acceptance and long-term adherence depend heavily on cultural appropriateness and practical usability of devices.

Integration with Vision 2020 and IPEC: The integration of AT frameworks with established global eye health initiatives represents a critical evolution in policy thinking. Vision 2020, the global initiative to eliminate avoidable blindness, has increasingly incorporated AT considerations into its prevention and treatment strategies, recognizing that rehabilitation and assistive technology are essential components of comprehensive eye care.

The Integrated People-Centered Eye Care (IPEC) framework builds on Vision 2020 principles while explicitly incorporating AT and rehabilitation services into its service delivery model. IPEC's emphasis on people-centered care aligns closely with AT principles of user empowerment and functional independence, creating synergies between clinical treatment and rehabilitation approaches.⁽³⁾

This integration has practical implications for health system organization, requiring coordination between ophthalmology

services, rehabilitation professionals, and AT specialists. Countries implementing IPEC frameworks have demonstrated improved outcomes when AT services are embedded within comprehensive eye care pathways rather than provided as separate, disconnected services.

Policy Challenges: Accessibility, Affordability, and Equity

Coverage Gaps and Unmet Need: Despite the clear policy frameworks established by WHO and international partners, significant gaps persist between policy intentions and implementation realities. National surveys consistently reveal extremely low coverage rates for basic assistive products, even in countries with established eye care systems. The Gambia national eye health survey, for example, found coverage rates under 4% for several essential assistive devices despite high clinical need for optical correction.(2,7)

These coverage gaps reflect multiple systemic challenges including inadequate service infrastructure, limited workforce capacity, and insufficient financing mechanisms. In many LMICs, AT services are concentrated in urban tertiary centers, leaving rural populations with minimal access to even basic optical correction. This geographic maldistribution compounds existing inequities and perpetuates cycles of functional disability and economic disadvantage.

The magnitude of unmet need varies significantly across regions and populations, with particularly severe gaps affecting children, elderly populations, and individuals with multiple disabilities. School-based assessments in India revealed substantial unmet AT needs among students with visual impairment, with many lacking basic educational technologies that could significantly improve academic outcomes.(8,9)

Socioeconomic Barriers and Inequities:

Socioeconomic factors represent perhaps the most persistent barriers to AT access globally. Even when services are available, cost barriers prevent many individuals from accessing needed technologies. These financial constraints operate at multiple levels, from

individual out-of-pocket costs to health system financing limitations that restrict service availability.

Income-related inequities in AT access are particularly pronounced in LMICs, where catastrophic health expenditures can result from purchasing basic assistive devices. The absence of comprehensive insurance coverage for AT products means that families must often choose between essential technologies and other basic needs, creating impossible trade-offs that perpetuate disadvantage.

Social determinants of health compound these economic barriers, with marginalized populations facing additional obstacles including geographic isolation, cultural barriers, and discrimination within health systems. Women, ethnic minorities, and individuals with multiple disabilities face compounded disadvantages that require targeted policy interventions to address.

Insurance and Reimbursement Frameworks: The literature reveals significant gaps in insurance and reimbursement frameworks for AT products and services globally. While the policy documents analyzed emphasize the importance of financial protection, specific mechanisms for achieving sustainable financing remain underdeveloped in many contexts. This represents a critical area where policy development has lagged behind need identification.

Successful reimbursement models typically require clear product categorization, standardized assessment procedures, and transparent eligibility criteria. However, the diversity of AT products and services, combined with rapid technological evolution, creates ongoing challenges for traditional insurance frameworks that rely on stable product categories and predictable costs.

Public-private partnerships have emerged as one mechanism for addressing financing gaps, but these arrangements require careful design to ensure equitable access while maintaining quality standards. The absence of robust regulatory frameworks for these partnerships can lead to market failures that disadvantage the most vulnerable populations.

Regulation and Standardization:**Navigating Digital Innovation****Regulatory Challenges for Digital Technologies:**

Traditional medical device regulatory frameworks were designed for static, hardware-based products and struggle to accommodate the dynamic, software-driven nature of modern AT solutions (10,11). AI-powered vision aids, smartphone-based navigation systems, and cloud-connected rehabilitation platforms raise complex questions about safety, efficacy, and accountability that existing regulatory structures are ill-equipped to address. International harmonization of regulatory approaches remains limited, creating barriers to global deployment of innovative AT solutions. Products approved in one jurisdiction may face lengthy re-approval processes in others, limiting access and increasing costs for manufacturers and users alike.

Data Privacy and Ethical Considerations:

Digital AT solutions inevitably collect and process sensitive personal data, including biometric information, location data, and behavioral patterns. This data collection raises fundamental questions about privacy, consent, and data ownership that current regulatory frameworks inadequately address. (11) Users often lack clear understanding of how their data is used, shared, or monetized, undermining principles of informed consent that are central to ethical healthcare practice. Algorithmic bias represents another critical ethical concern, particularly for AI-powered AT solutions. Training data limitations and algorithmic design choices can perpetuate or amplify existing inequities, potentially disadvantaging already marginalized populations. Ensuring fairness and inclusivity in AI-driven AT requires ongoing vigilance and proactive intervention throughout the development and deployment process.

Standards Development and Harmonization:

The absence of internationally harmonized standards for AT products and services creates multiple challenges for users, providers, and policymakers. Without common definitions and quality benchmarks, it becomes difficult to

compare products, assess outcomes, or ensure interoperability across different systems and contexts. Adaptive regulatory approaches that can accommodate technological evolution while maintaining safety and quality standards represent an important area for policy innovation.

Implementation Models: From Community-Based Care to Tele-Rehabilitation**Community-Based Service Delivery:**

Community-based AT delivery models have emerged as a promising approach for extending services to underserved populations, particularly in resource-limited settings. These models leverage local infrastructure and personnel to provide AT assessment, fitting, training, and ongoing support closer to users' homes and communities.

School-based AT learning centers in India demonstrate the potential of community-integrated approaches. These centers, supported by tertiary eye care facilities and NGO partners, provide on-site AT provision, training, and certification services that significantly increase student access to educational technologies.(9) The model's success stems from its integration with existing educational infrastructure and its emphasis on building local capacity for ongoing support.

Community health worker programs represent another promising avenue for AT service expansion. When properly trained and supported, community health workers can provide basic AT assessment, education, and follow-up services, extending the reach of specialist services while building local expertise and ownership.

Tele-Rehabilitation and Remote Services:

Tele-rehabilitation services offer significant potential for overcoming geographic barriers to AT access, particularly in countries with dispersed populations and limited specialist workforce. Early evidence suggests high user satisfaction and short-term functional improvements from remote vision rehabilitation services, though robust clinical trials and cost-effectiveness data remain limited.(6)

Remote AT assessment and fitting services have shown particular promise for certain product categories, including optical devices and basic mobility aids. These services can reduce travel burden for users while enabling specialists to serve larger geographic areas more efficiently. However, successful implementation requires reliable internet infrastructure and user comfort with digital technologies, which may limit applicability in some contexts.

The COVID-19 pandemic accelerated adoption of tele-rehabilitation services globally, providing valuable lessons about implementation challenges and success factors. Key enablers include user-friendly technology platforms, comprehensive training for both providers and users, and integrated support systems that combine remote and in-person services as needed.

Public-Private and NGO Partnerships: Public-private partnerships (PPPs) and NGO collaborations have proven essential for scaling AT services in many contexts, particularly where public sector capacity is limited. These partnerships can leverage private sector innovation and efficiency while maintaining public sector oversight and equity focus.

Successful partnership models typically involve clear role definition, shared accountability frameworks, and aligned incentive structures. Private sector partners may contribute technological expertise, manufacturing capacity, or distribution networks, while public sector partners provide regulatory oversight, quality assurance, and equity safeguards.

NGO partners often serve as crucial intermediaries, bridging gaps between formal health systems and community needs. Their deep community knowledge and trusted relationships can facilitate user acceptance and long-term adherence to AT interventions. However, sustainability of NGO-dependent models requires careful attention to capacity building and transition planning.

Case Studies: Comparative Analysis of National Approaches

India: School-Based AT Integration: India's approach to AT integration through school-

based learning centers provides valuable insights into community-embedded service delivery. The Delhi model, implemented in schools for the blind with support from tertiary vision rehabilitation centers, demonstrates how institutional partnerships can expand AT access while building local capacity.(9)

Key features of the Indian model include on-site AT provision, comprehensive user training, and ongoing technical support. The program's success in increasing student engagement with educational technologies highlights the importance of contextual adaptation and user-centered design. Students reported significant improvements in academic performance and independence following AT interventions, validating the model's functional outcomes. The program's challenges include limited scalability due to resource constraints and dependence on external funding. Sustainability concerns highlight the need for systematic integration of AT services into education sector budgets and policies rather than relying on project-based funding.

The Gambia: National Needs Assessment: The Gambia's national eye health survey provides a compelling example of systematic needs assessment for AT planning. The survey revealed a stark mismatch between clinical need for optical correction (affecting over 50% of adults) and actual device coverage (less than 4%), highlighting the scale of unmet need in many African contexts.(2)

The Gambian experience demonstrates the value of population-based data for AT planning and resource allocation. By quantifying unmet need across different population groups and geographic areas, the survey enables targeted interventions and evidence-based advocacy for increased resource allocation.

However, the survey also reveals the limitations of needs assessment without corresponding service development. Despite clear documentation of need, coverage rates remain low due to limited service infrastructure and financing mechanisms. This highlights the importance of linking needs assessment with concrete implementation planning and resource mobilization.

European Approaches: Regional Harmonization: The WHO European Region's

approach to AT policy harmonization provides insights into multi-country coordination challenges and opportunities. Regional reviews reveal significant variations in AT definitions, coverage policies, and service delivery models across European countries, despite shared policy frameworks and economic integration.(7,12)

The European experience highlights both the potential and limitations of regional harmonization approaches. While common frameworks can facilitate cooperation and learning, successful implementation ultimately depends on national-level commitment and resource allocation. The diversity of health system structures and financing mechanisms across Europe continues to create barriers to full harmonization.

Future Directions: Toward Comprehensive AT Ecosystems

Global AT Repositories and Knowledge Sharing: The development of global AT repositories represents a critical need for improving evidence-based decision-making in AT policy and practice. These repositories should include standardized product information, outcome data, cost-effectiveness analyses, and user feedback to support informed choice by users, providers, and policymakers.

Knowledge sharing platforms can facilitate rapid dissemination of innovation and best practices across countries and contexts. However, successful knowledge sharing requires attention to cultural adaptation and local relevance, ensuring that innovations developed in one context can be meaningfully adapted to others.

International cooperation mechanisms, including technical assistance programs and research collaborations, can accelerate progress toward comprehensive AT ecosystems. These mechanisms should prioritize capacity building in LMICs while fostering South-South cooperation and knowledge exchange.

Harmonized Reimbursement and Financing: The development of harmonized reimbursement frameworks represents a critical challenge for sustainable AT access

globally. Risk-sharing mechanisms, including international insurance pools and catastrophic coverage programs, could help address the financial barriers that prevent many individuals from accessing needed AT. These mechanisms require careful design to avoid moral hazard while ensuring adequate coverage for vulnerable populations. Value-based reimbursement models, which link payment to functional outcomes rather than product provision alone, offer potential for improving both efficiency and effectiveness of AT services. However, implementing these models requires robust outcome measurement systems and clear accountability frameworks.

Inclusive Design and Universal Access: The principle of universal design offers a framework for developing AT solutions that are accessible to the widest possible range of users from the outset. This approach can reduce the need for specialized adaptations while improving usability for all users, including those without disabilities. For this there must be designed processes that involve users with disabilities as active participants rather than passive recipients of technological innovation. The integration of inclusive design principles into mainstream technology development could significantly expand AT availability while reducing costs. However, achieving this integration requires policy interventions including accessibility standards, procurement requirements, and incentive structures that reward inclusive innovation.

POLICY RECOMMENDATIONS

Strengthening Health System Integration: Successful AT implementation requires systematic integration into health system planning and financing mechanisms. Countries should develop national AT strategies that align with broader health system strengthening efforts while addressing the specific needs of vision care.

Health system financing mechanisms must be adapted to accommodate the unique characteristics of AT services, including their long-term nature, user training requirements, and ongoing support needs. This may require innovative financing approaches that blend

health and social sector resources while maintaining clear accountability for outcomes.

Regulatory Framework Development:

Regulatory frameworks for AT must evolve to address the challenges posed by digital and AI-enabled technologies while maintaining essential safety and quality protections. Adaptive regulatory approaches that can accommodate technological evolution should be developed, including sandbox environments for testing innovative solutions and expedited approval pathways for breakthrough technologies that address unmet needs. Data governance frameworks must be established to protect user privacy while enabling beneficial uses of data for research and service improvement. These frameworks should include clear consent procedures, data minimization principles, and user control over personal information.

Financing and Sustainability: Sustainable financing mechanisms for AT require diversified funding sources and risk-sharing arrangements that protect users from catastrophic costs while ensuring provider sustainability. These mechanisms should include public funding, insurance coverage, and innovative financing approaches that leverage private sector participation.

International cooperation on AT financing should be strengthened, including technical assistance for health financing system development and risk-sharing mechanisms that help countries manage the costs of emerging technologies. Value-based contracting approaches should be developed that link reimbursement to functional outcomes and user satisfaction rather than simply product provision. These approaches can improve both efficiency and effectiveness while incentivizing continuous improvement in service quality.

CONCLUSION

The global policy landscape for assistive technology in eye care has evolved significantly over the past decade, with WHO frameworks providing comprehensive guidance for system development and implementation. However, substantial gaps persist between policy

aspirations and implementation realities, particularly in low- and middle-income countries where the burden of visual impairment is greatest.

Addressing the challenge of limited workforce capacity and inequities in access requires coordinated action across multiple sectors and levels of governance, from international cooperation to local service delivery. Successful implementation models demonstrate the importance of community integration, user participation, and multi-sectoral partnerships in achieving sustainable AT access. However, scaling these models requires systematic health system strengthening and sustained political commitment to equity and inclusion.

Future policy development must embrace adaptive approaches that can accommodate technological evolution while maintaining essential protections for users. This requires strengthened international cooperation, enhanced evidence generation, and continued commitment to the principle that assistive technology is a human right rather than a privilege.

The path toward universal AT access in eye care is complex and challenging, but the policy foundations established by WHO and international partners provide a solid framework for progress. Success will depend on sustained commitment from all stakeholders – governments, civil society, private sector, and users themselves – to transform policy intentions into implementation realities that improve lives and reduce inequities globally.

AUTHORS CONTRIBUTION

All authors have contributed equally.

FINANCIAL SUPPORT AND SPONSORSHIP

Nil

CONFLICT OF INTEREST

There are no conflicts of interest.

DECLARATION OF GENERATIVE AI AND AI ASSISTED TECHNOLOGIES IN THE WRITING

PROCESS

The authors haven't used any generative AI/AI assisted technologies in the writing process.

REFERENCES

1. Beheshti, M., Jones, B. M., Hudson, T., Starner, T., & Pratt, S. Wearables for persons with blindness and low vision: Form factor matters. *Assistive Technology*, 2023;35(3), 234-245.
2. Boggs, D., Hydara, A., Faal, Y., Alma, M. A., Polack, S., & Zuurmond, M. (2021). Estimating need for glasses and hearing aids in The Gambia: Results from a national survey and comparison of clinical impairment and self-report assessment approaches. *International Journal of Environmental Research and Public Health*, 18(12), 6302. <https://doi.org/10.3390/IJERPH18126302>
3. Burton, M. J., Ramke, J., Marques, A. P., Bourne, R. R., Congdon, N., Jones, I., ... & Resnikoff, S. (2021). The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. *The Lancet Global Health*, 9(4), e489-e551. [https://doi.org/10.1016/S2214-109X\(20\)30488-5](https://doi.org/10.1016/S2214-109X(20)30488-5)
4. Das, B. (2022). Sustainable global vision care. *Kerala Journal of Ophthalmology*, 34(2), 89-94. https://doi.org/10.4103/kjo.kjo_64_22
5. Gill, K. (2022). Visual disability in India: A literature review of challenges, interventions, and inclusive strategies (1990–2020). *ShodhKosh Journal of Visual and Performing Arts*, 3(1), 1-15. <https://doi.org/10.29121/shodhkosh.v3.i1.2022.5768>
6. Labkovich, M., Paul, M., Kim, E., Patel, S. N., & Nagiel, A. (2022). Portable hardware & software technologies for addressing ophthalmic health disparities: A systematic review. *Digital Health*, 8, 20552076221090042. <https://doi.org/10.1177/20552076221090042>
7. Mishra, S., Laplante-Lévesque, A., Barbareschi, G., Romo Parada, L., Romo Parada, L., & Gowran, R. J. (2022). Assistive technology needs, access and coverage, and related barriers and facilitators in the WHO European region: A scoping review. *The Lancet Regional Health-Europe*, 22, 100485.
8. Nayar, P. D., Senjam, S. S., Christy, B., Gupta, V., Vashist, P., & Gupta, N. (2021). Low vision, vision rehabilitation, and assistive technology. In *Community Ophthalmology* (pp. 297-318). Springer. https://doi.org/10.1007/978-981-16-3787-2_16
9. Senjam, S. S., Manna, S., Vashist, P., Gupta, V., Gupta, N., & Gupta, S. K. (2022). Improving assistive technology access to students with low vision and blindness in Delhi: A school-based model. *Indian Journal of Ophthalmology*, 70(12), 4296-4302. https://doi.org/10.4103/ijo.IJO_1281_22
10. Swaminathan, U., & Daigavane, S. (2024). Unveiling the potential: A comprehensive review of artificial intelligence applications in ophthalmology and future prospects. *Cureus*, 16(6), e61826. <https://doi.org/10.7759/cureus.61826>
11. Tan, T. F., Thirunavukarasu, A. J., Jin, L., Ting, D. S. W., Sim, D. A., Ang, M., ... & Liu, Y. (2023). Artificial intelligence and digital health in global eye health: Opportunities and challenges. *The Lancet Global Health*, 11(9), e1432-e1443. [https://doi.org/10.1016/s2214-109x\(23\)00323-6](https://doi.org/10.1016/s2214-109x(23)00323-6)
12. World Health Organization. (2022). Global report on assistive technology. World Health Organization.