STANDARD TREATMENT WORKFLOW (STW)

Diabetic Ketoacidosis

Anil Bhansali¹, Eesh Bhatia², B Ganpathi³, Maj Gen Narendra Kotwal⁴, Rajesh Rajput⁵, Ravinder Goswami⁶, Subhankar Choudhary⁷, V Mohan⁸

¹Postgraduate Institute of Medical Education and Research, Chandigarh; ²Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow; ³St John’s Medical College Hospital, Bengaluru; ⁴Army Hospital Research and Referral, New Delhi; ⁵Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak; ⁶All India Institute of Medical Sciences, New Delhi; ⁷Institute of Post-Graduate Medical Education and Research, Kolkata; ⁸Dr. Mohan’s Diabetes Specialities Centre, Chennai

CORRESPONDING AUTHOR
Dr. Anil Bhansali, Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh
Email: anilbhansali_endocrine@rediffmail.com

CITATION
DOI: https://doi.org/10.56450/JEFI.2024.v2i1Suppl.056
This work is licensed under a Creative Commons Attribution 4.0 International License.
©The Author(s). 2024 Open Access

DISCLAIMER
This article/STW, was originally published by Indian Council of Medical Research (ICMR) under Standard Treatment Workflow. The reprinting of this article in Journal of the Epidemiology Foundation of India (JEFI) is done with the permission of ICMR. The content of this article is presented as it was published, with no modifications or alterations. The views and opinions expressed in the article are those of the authors and do not necessarily reflect the official policy or position of JEFI or its editorial board. This initiative of JEFI to reprint STW is to disseminate these workflows among Health Care Professionals for wider adoption and guiding path for Patient Care.
Diabetic Ketoacidosis

Standard Treatment Workflow (STW)

Diabetic Ketoacidosis

ICD-10-E11.10

Assess
- Sensorium (GCS), pulse rate, blood pressure, respiratory rate, temperature
- Signs of dehydration (dry tongue, sunken eyes, skin turgor, urine output)

Assess Severity of DKA

<table>
<thead>
<tr>
<th>Level of Sensory</th>
<th>Alert</th>
<th>Mild</th>
<th>Stupor</th>
<th>Coma</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.25-7.3</td>
<td>7.0-7.25</td>
<td><7.0</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>15-18</td>
<td>10-15</td>
<td><10</td>
<td></td>
</tr>
</tbody>
</table>

Look & Address for Precipitating Factors
- Skipping/missing insulin doses
- Fever/cough/loose stools/burning micturition

Investigations
- Spot capillary blood glucose (venous blood preferable in case of shock)
- Serum ketone/urine ketone by dipstick
- VBC (for pH, bicarbonate, anion gap)
- Na⁺/K⁺/BUN/Creatinine/EKG

Monitoring
- Strict input/output charting: every 1 hour
- Report if urine output is <30ml/hour for 2 consecutive hours
- One hour after starting the treatment: Till resolution of DKA
- BP and vital signs: every 1 hour
- Blood glucose every 1 hour
- Venous pH, Na⁺, K⁺, HCO₃⁻: 2-4 hourly
- Blood ketones (if available)/Urine for ketones: 12 hourly
- After resolution of DKA: Blood glucose monitoring every 4 hours

Management
- Replace fluids – 1 L of 0.9% saline over first hour followed by 250-500 ml/hour (10-20ml/kg/hour initially for children)
- Administer regular insulin – 0.1 IU/kg IV then 0.1 IU/kg/hour IV infusion
- Double infusion rate if less than 10% fall in blood glucose after 1 hour
- When blood glucose < 250 mg/dl, add 5% dextrose @ 50 ml/hour
- Supplement potassium before insulin if serum K⁺ < 3.3 mEq/L (or ECG changes)
- Replace potassium @ 10-20 mEq/hour with insulin infusion if serum K⁺ < 5.5 mEq/L
- If pH < 7.0, add sodium bicarbonate: 50 mmol in 200 ml sterile water over 2 hour
- Bicarbonate should be given only if pH is less than 6.9 or if pH is less than 7.1 along with hypotension or if hyperkalemia is present

Treating
- Patient accepting orally, blood glucose consistently > 250 mg/dl, normalization of anion gap and correction of metabolic acidosis
- Administer SC dose of long/intermediate-acting & short acting insulin at least 30 mins before stopping insulin infusion. Shift to basal-bolus/pre-mixed insulin regimen

Common Errors/Pitfalls in DKA Diagnosis and Management
- Initiating Insulin therapy before I/V fluid therapy
- Failure to review fluid replacement therapy particularly in elderly patients
- Failure to identify underlying cause
- Search for another cause of obtundation: If the osmolality is <320 mOsm/kg H₂O
- Potassium: may be normal despite depletion of body stores due to metabolic acidosis
- Elevated total leucocyte count does not suggest presence of infection until more than >15 X 10⁹/l
- Monitor for cerebral edema especially in children
- Body temperature cannot be used as a guide to presence of infection
- Hyperamylasemia: Cannot be used as a marker for diagnosis of pancreatitis
- Hypertrophic necrosis: can cause pseudohypokalemia and when marked precipitates pancreatitis
- Ketosis may worsen paradoxically with successful treatment initially
- Stopping I/V insulin before SC insulin given

Abbreviations

- BUN: Blood urea nitrogen
- DKA: Diabetic ketoacidosis
- ECG: Electrocardiogram
- GCS: Glasgow coma scale
- IV: Intravenous
- ICU: Intensive care unit
- SC: Subcutaneous
- VBG: Venous blood gas

Keep a Low Threshold for Timely Diagnosis and Management of DKA

© 2023 JEFI

Department of Health Research, Ministry of Health & Family Welfare, Government of India